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 THE OSCULATING CONICS OF PHYSICAL

 SYSTEMS OF CURVES

 Edward Kasner and John DeCicco

 1. Introduction. Kasner has presented the development of the oscu-

 lating parabolas (four point contact) of the trajectories and the systems
 Sk of a positional field of force in the plane in the Princeton Collo-

 quium1. In the present paper, we shall begin the study of the theory

 of the osculating conic sections (five point contact) of trajectories
 and general physical systems of curves.

 2. Systems Sk. Consider a general positional field of force defined
 over a certain region of the (x, y)-plane where the force vector, acting
 at any point (x, y), is assumed to be continuous and to possess contin-
 uous partial derivatives of the first and second orders. Also the force
 vector is assumed to be not identically zero. There is no loss in

 generality in supposing that a particle moving in this field of force
 is of unit mass.

 A system Sk of curves in this positional field of force consists

 of curves along which a constrained motion is possible so that the
 pressure P is proportional to the normal component N of the force
 vector. Thus P = kN where k is the constant factor (/ -1) of propor-

 tional ity2 *
 Let 8 and r denote the inclination to the x-axis and the radius of

 curvature of a curve C, and let the subscript s denote total differen-
 tiation with respect .to its arc length s. Also let t denote the time,

 and v the speed of a particle describing this curve C. Finally T and N
 denote the tangential and normal components of the force vector along
 a curve C in the given field of force.

 The intrinsic differential equations of a system Sk are

 2 d
 ( 1 ) 8 = (k + 1)/N dv = vv5 = T,

 r dt

 2
 since p = v - N = kN. Eliminating the speed v from these equations,

 it is found that the intrinsic differential equation of third order
 representing a system Sk in a positional field of force is

 (2) rS= n T N where 2

 The important systems Sk of physical interest are

 (a) The system SO of trajectories given by k = 0, or n = 2.

 117
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 118 MATHEMATICS MAGAZINE (Jan. -Feb.

 (b) The system S1 of general catenaries given by k = 1, or n = 1.

 (c) The system S 2 of generalized brachistochrones given by k = -2,
 or n = -2.

 (d) The system S<,, of velocity curves given by k = 00, or n = 0.
 3. Certain related vectors associated with a positional field of

 force. We shall consider certain vectors derived from the force vector
 in order that the derivatives of higher order of (2) with respect to
 the arc length be of a simpler form.

 Let +6(x, y) and +(x, y) denote the horizontal and vertical components
 of the force vector. Then

 (3) T = cos O + Q sin , N = -cb sin a + q cos 0.

 It is observed that T and N are any two differentiable functions of
 (x,y,O) which obey the two relations

 (4) T- = N, No = -T.

 Our two new vectors are the following ones. The horizontal and
 vertical components of the first vector are Nx and N , and those of the

 second vector are TX and T . Denote the tangential and normal components
 of the first vector by A and B, and those of the second vector by C
 and D. Then

 (5) .A = N.cos 6 + N ysin 0, B = -N.sin 0 + Nycos 0,
 C = T cos 0 + T sin 0, D = -T sin 0 + T cos 0.
 x y x y

 Let E denote the quantity

 (6) E = A cos O + A sin 0 = N cos20 + 2N cos 6 sin 6 +N sin2O.

 From equations (2), (4), (5), (6), we obtain

 Nr8 = (n + 1)T - Ar,

 (7) N2rr8 = (n + 1)(N2 + T2) + r[n(CN - 2AT) +

 (2CN - 3AT - BN)] + r2 (2A2 - EN).

 The following expressions are useful for later purposes.

 N2(9 + rs 2 - 3rr..) = (n - 2)[(n + 1)T72 - 3N2]

 + r[n(4AT - 3CN) + (7AT - 6CN + 3BN)] + r2(3EN - 2),

 (8) N2(9 + 2r 2 - 3rr ) = (n + 1)(2n - 1)72 - 3(n - 2)N2

 + r[n(2AT - 3CN) + (5AT - 6CN + 3BN)] + r2(3EN - 4A2).
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 1952) PHYSICAL SYSTEMS OF CURVES 119

 4. The osculating conic sections of a system Sk of a curves.

 Consider a fixed lineal-element E defined by the point (xo,yo) and
 the direction through this point of inclination 0 to the positive
 x-axis. Denote by (X,Y) the new cartesian coordinates of a point where
 the origin of this new coordinate system is at the point of E and the

 positive X-axis is the positive direction of E. The cartesian coordinates

 (X,Y) are said to be relative to the lineal-element E. The relationships
 between the old coordinates (x,y) and the new coordinates (X,Y) are

 (9) (x + iy) = ei&(X + iY) + (x0 + iyo)P

 X + iY = [(x - x ) + i(y - yo)1e i.

 Next consider a curve x = x(s). y = y(s), where s is the arc

 length and r is the radius of curvature. Let s = so define a fixed
 lineal-element E of the curve with point xo = x(so), yo = y(so), and
 direction 0 - arctan y,(sO)/x s(se). The equation of the osculating
 conic section (five-point contact)3 of the curve x = x(s), y = y(s),
 at the lineal-element E is

 (10) 9X2 - ;6r8XY + (9 + 2r 2 - 3rr.5 )y2 _ 18rY = O,

 where (X,Y) are the running coordinates of a point on the conic relative
 to the lineal-element E.

 The conic section (10) is an ellipse, parabola, hyperbola according
 as the expression

 (11) 9 + r 2 - 3rr88,

 is positive, zero, negative.
 If (11) is not zero, the conic section (10) is central. In this

 case, its center is

 (12) Z = X + =y 3r(r8 + 3i)
 9 + r'2 - 3rr

 s ss

 The foci of the conic section (10) are

 (13) (9 + rs2 - 3rr88)Z2 - 6r(r8 + 3i)Z - 9r2 = 0.

 By substituting (7) and (8) into (10), it is found that the osculating
 conic sections of a system Sk of oo3 curve in a positional field of force
 are

 (14) 9N2X2 - 6N[(n + 1)T - Ar]XY

 + [{(n + 1)(2n - 1)T2 - 3(n - 2)N2} + {n(2AT - 3CN)

 + (5AT - 6CN + 3BN)}r + (3EN - 4A2)r2]Y2 - 18N2rY = 0.
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 120 MATHEMATICS MAGAZINE (Jan.-Feb.

 By (8) and (11), it is deduced that there is, in general, one

 trajectory of the system S,, of dynamical trajectories through a given
 lineal-element E which is hyperosculated by its osculating parabola.
 For k / 0, there are, in general, two curves of a system Sk of curves

 through a given lineal-element E which are hyperosculated by their

 osculating parabolas.

 The family (14) is quadratic in r and also quadratic in n.
 5. The envelope of the family (14). By setting the discriminant

 of the quadratic equation in r defined by (14) equal to zero, the

 following result is obtained.
 Theorem 1. Consider the 0X1 integral curves of a system Sk which

 pass through a given lineal-element E. The col1 osculating conic sections
 constructed to these curves at E, not only pass through E, but also
 touch the conic section

 (15) [6ANX + {n(2AT - 3CN) + (SAT - 6CN + 3BN)}Y - 18N2]2

 - 4(3EN - 4A2) [{3NX - (n + l)TY}2

 + (n - 2){(n + 1)T2 - 3N2}Y2] = 0.

 Ihe conic (15) is degenerate if and only if 3EN - 4A2 = 0, or n = 2.

 The case n = 2 defines the system S0 of dynamical trajectories.
 Theorem 2. 7he col osculating conic sections constructed at a lineal-

 element E to the ool integral curves of the system SO of dynamical
 trajectories which pass through E, not only pass through E, but also

 touch the two straight lines

 (16) 2ANX + (3AT - 4CN + BN)Y - 6N2

 = ?2(3EN- 4A2)%(NX- TY).

 These two straight lines intersect in the point

 (17) Z = X + iY = 6N(T + iN)
 5AT - 4CN + BN'

 which is on the line of force.

 The two straight lines (16) may be real and distinct, or real and
 coincident, or conjugate-imaginary.

 In the Newtonian field of force where the force vector at any point
 is directed towards a fixed point P and the magnitude is inversely

 proportional to the square of the distance of the point from P, the
 trajectories are conic sections with one focus at P. The point (17)
 reduces to the point P and the straight lines (16) become the minimal
 straight lines tangent to the conical trajectory.

 Ihe conic sections (15) are of the form

 (18) aX2 + 2(/30n + 31 )XY + (y0n2 + yln + Y2)y2
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 1952) PHYSICAL SYSTEMS CF CURVES 121

 + 28X + 2(%0n + E1)Y + 71 0,

 where (t,3,Ey,7,c7j) are independent of n.
 Theorem 3. By varying k, the conic sections (15) form a quadratic

 family where n is the parameter. These conics pass through two fixed

 points on the line of the lineal-element E, touch a conic section, and

 have their centers on another conic section,

 In the first place, the points in whlich the conic section (18)

 intersect the line of E, satisfy the equations Y= 0, aX2 + 28X + n = 0.
 Since these equations are independent of n, it is seen that all the
 conic sections of (18) pass through thiese two points.

 The conics (18) touch the conic section

 (19) (23OX + y1Y + 2%o)2 - 4yO(aX2 + 281,XY

 + y2 y2 + 26X + 2E Y + )= 0.

 Finally the centers of the coric sections (18) are given by

 (20) aX + (,30n + /1 )Y + 8 = 0,

 (130n + 1 )X + (n + yn + y2)Y + En + l= 0

 Thus the centers describe the conic section

 (21) 0o(aX + ,Y + )2 _ /3o (E + y-Y)(cX + Y + 6)

 - /02 (X2 - y2 y2 + 8X - E1Y) = 0.

 6. The locus of the centers of the conic sections of the family
 (14). By (7), (8) and (12), it is found that the centers of the conic

 sections (14) are

 (22) [(n - 2) {(n + 1)T2 - 3N2} + {n(4AT - 3CN)

 + (7AT - 6CN + 3BN)}r + (3EN - 5A2)-r_2] Z

 = 3Nr[(n + 1)T - Ar + 3i/N].

 Theorem 4. The centers of the c0J osculating conic sections con-

 structed at a lineal-element E to the Co' integral curves of the system
 Sk, which pass through E, describe the conic section

 (23) (3EN - 5A2)[3NX - (n + 1)TY]2

 - A [n(4AT - 3CN) + (7AT - 6CN + 3BN)1[3NX - (n + 1)TY]Y

 + (n - 2)A2[(n + 1)T2 _ 3/21 y2 + 9FV2[3NX - (n + 1)TY] = 0,

 which passes through the point of E in the direction whose slope with

 respect to E is equal to the slope of the force vector with respect

This content downloaded from 132.77.150.148 on Mon, 30 May 2016 18:56:01 UTC
All use subject to http://about.jstor.org/terms
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 to E multiplied by the quantity 3/(n + 1).
 Thie precedinig result follows from equations (22) and (23)4.
 The conic section (23) is degenerate only in the cases where A = 0,

 or n = 2.

 Theorem 5. The centers of the col osculating conic sections con-

 structed at a lineal-element E to the co' integral curves of the system

 SO of dynamical trajectories which pass through E, describe the straight
 line

 (24) (3EN - 5A2)X - (3ET - 4AC + AB) Y + 3N = 0.

 This result follows from (22) by placing n = 2.
 Theorem 6. By varying k, the conic sections (23) form a quadratic

 family where n is the parameter. These conics pass through the point of
 E and another fixed point on the line of E, touch a conic section,
 and have their centers on another conic section.

 The family (23) is of the form (18) where 77 = 0. The remainder of

 the theorenm follows frorrm the proof of Thl-^eorem 3.
 7. The locus of the foci of the conic sections of the family (14).

 Bv (7), (8) and. (13), it is found thiat the foci of the conic sections
 (14) are given by the equation

 (25) [(n - 2){(n + 1)T2 - 3N2} + {n(4AT - 3CN)

 + (7AT - 6CN + 3BN)r + (3EN - 5A2 )r2] z2

 - 6Nr[(n + 1)T - Ar + 3iiN]Z - 9N2r2 r 0,

 together with its complex conjugate equation.
 To obtain the implicit equation of the locus of thie foci, we proceed

 in the following mianner. Divide (25) by Z2 . Taking the conjugate and
 subtracting, the following expression

 (rX2 + Y2)[3NX - (n + 1)TYI
 (26 ) r = - Y[A (X2 + y2) - 3NXI

 is obtaine-l. Substituting this value of r into (25) and simplifying,
 the following result may be statel.

 Theorem 7. The foci of the xl osculating conic sections constructed

 at a lineal-element E to the 2xD' integral curves of the system Sk,

 which pass through E, describe the algebraic curve of sixth degree

 (27) (3EN - 5A2)(X2 + y2)2 [3NX - (n + 1)TY]2

 - [n(4AT - 3CN) + (7AT - 6CN + 3BN)]Y(X2 + y2) [3IVX

 - (n + 1)TY] [A(X2 + y2) - 3NXI + (n - 2) [(n + 1)T2 - 3N21 Y' [A(X2 + y2)

 - 3NXI2+ 9N2(X2+Y2) [3NX- (n + 1)TY] [2A(X2 +Y2)- 3NVX- (n+ 1)TY] = 0.
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 1952) PHYSICAL SYSTEMS OF CURVES 123

 This locus has double points at the circular points I and J at infinity
 and a singular point of fourth order at the point of E.

 The case n = 2 is of particular interest as it gives the system SO

 of dynamical trajectories.

 Theorem 8. The foci of the 00 osculating conic sections constructed

 at a lineal-element E to the 0n1 dynamical trajectories, which pass
 through E, describe the algebraic curve of third degree

 (28) (3EN - 5A2)(X2 + y2)(NX - TY)

 - (5AT - 6CN + BN)Y[A(X2 + y2) _ 3NXI

 + 3N2[2A(X2 + y2) - 3NX - 3TY] = 0.

 This locus has two minimal asymptotes and it passes through the point
 of E in the direction which is the symmetrical image of that of the
 force vector with respect to the line of E.

 Ihe necessary and sufficient conditions that the cubic curve (28)
 be degenerate, are

 (29) 6ENT - 5A2T - 6ACN + ABN= 0,

 T2(3EN - 4A2) + A2N2 = 0.

 In this event) the cubic curve (28) consists of the straight line

 (30) NX + TY = O,

 and the null circle of center

 3NT(T + iN)

 (31) X + iY - A(T2 + N2)

 The conditions (29) are realized by a Newtonian field of force.
 The point (31) is the center P of this particular field of force.

 REFERENCES

 *Presented to the American Mathematical Society, 1948.

 Kasner, Differential-Geometric Aspects of Dynamics, Amer. Math. Soc.

 Publications, 1913, 1934, 1948. This is referred to as the Princeton Col-

 1 oquium.

 2See the PrincetQn Colloquium, pp. 91-96.

 3For the corresponding formulas relative to the osculating parabola

 (four-point contact), see Kasner and DeCicco, A generalized th'eory

 of dynamical trajectories, Trans. Amer. Math. Soc., 54, 23-38 (1943).

 4Compare this with a corresponding result obtained by Kasner, Systems
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 of extremals in the calculus of variations, Bull. Amer. Math. Soc.,
 13, 289-292 (1908).

 Columbia University

 De Paul iUniversity
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COSETS IN A SEMI-GROUP 

Milo W. Weaver 

INTRODUCTION. If two integers a and b have the property, a - b 
is divisible by the integer m, a is said to be congruent to b modulo 
m. This is written a b (mod m). The equality of ordinary algebra 
shares many of its properties with the congruence relation. In this 
paper, we shall suppose that the reader is familiar with this relation 
as discussed in the books on elementary numrber theory. The congruence 
characteristics of the integers which are prime to the modulus are 
well known. These integers will be called units in this study. One of 
the main objectives of this article is to present some of the properties 
of the integers which are not prime to the modulus. 1 Since no two of 
the integers 0, 1, . . ., m - 1 are congruent modulo m, and since every 
integer is congruent to one of them, they are called the least residues 
modulo m. The formula i = km + r, 0 < r < m, gives us a method of 
finding the least residue of an integer i modulo m. We shall now give 
some examples illustrating the behavior of certain integers not prime 
to a composite modulus. When 30 is raised to successive powers, we 
obtain the set of incongruent integers modulo 360: 30, 180, 0. Similarly 
12 generates the least residues: 12, 144, 288, 216, 72 modulo 360. 
This set contains the set: 144, 288, 216, 72, which has the properties 
modulo 360: each one divides the others modulo 360; a 216 a (mod 360) 
for each a of the subset; and 288 generates the subset. 5 generates a 
set of least residues modulo 360, which has the property: each divides 
the others modulo 360. The least residues of the units modulo 12 are: 
1, 5, 7, 11. If the elements in this set are multiplied successively by 
1, 2, 3, 4, 6, and 0, we get the sets of least residues mo3ulo 12: 
1, 5, 7, 11; 2, 10; 3, 9; 4, 8; 6; and 0. Furthermore these sets are 
disjoint and they exhaust the total set of least residues modulo 12. 
These examples are special cases of theorems 1, 3, and 4. Cosets in 
semi-groups are mentioned in theorem 1; we shall develop a theory of 
these cosets which is similar to the theory of cosets in groups. It 
is astounding that theorems 3, 4, and 6 concerning the properties of 
the residues modulo m are not well known; however the writer has not 
beeni able to find published proofs of these theorems. If any previous 
work is duplicated, then that part of the present paper can be regarded 
as exposi tory. 

PART 1 

COSETS IN SEMI GROUPS. Let S be a set of elements denoted by small 
letters, 0 be an operation symbol which can be placed between any two 

lThis problem as well as the problem of the generalization of the theory 
of cosets was suggested to the writer by H. S. Vandiver. 

125 
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elements of S, and = be a relation called equal with the properties: 
1. a = a for each element a of S. 
2. If a = b, then b = a. 
3. If a = b and b = c, then a = c. 
4. In an operational equation a0boco.-. r = touOv' .. ?y, any com- 

bination of elements can be replaced by its equal combination. 
The symbol 0 is often omitted between two elements. If S also has the 
properties: 

5. ab = x is always solvable in S, 
6. (ab)c = a(bc) for each a, b, and c of S, 

then S is called a semi-group. If furthermore: 
7. ax = b and ya = b have solutions for each a and b of S, 

then S is called a group. 
Let S be a semi-group with a subsemi-group S'. If a. is an element 

in S, then the right spread of ai (written hereafter as si) with respect 
to (w.r.t. ) S' is the number of elements x (which set of x's we call 
S") in S' such that a x = ai. This set is a semi-group, for a x1x2 = 
aix2 = ai for each two x's of S". If S' is a finite group G, then the 
set S" is a group, for it is a finite closed subset of a group. S" can 
be proved to be a group even though G is infinite. S" is said to be 
the right semi-group in S w.r.t. S', belonging to a.. The word "left" 
can be substituted for "right" throughout the discussion. If a commutes 
with all the elements of S', we omit the word "right'. These two 
comments apply to all future discussions of this nature. If S' is a 
group, it can be divided into cosets w.r.t. S". If S is a finite semi- 
group containing a subsemi-group S', and ci is an element in S, by the 
left coset c S', we mean the set of elements obtained by multiplying 
Ci on the right by each element of S'. If S' is a finite group G of 
order n and si is the right spread of c in S w.r.t. G, let n = sLti. 
Then ti is an integer, for it is merely the index in G of the right 
subsemi-group in S w.r.t. G, belonging to c . If S is divisible uniquely 
into mutually exclusive left cosets w.r.t. a subsemi-group (group) S', 
then S' is called a left divisor semi-group (group) of S. The last 
example of the introduction illustrates this definition. W'e emphasize 
the uniqueness of the cosets, regardless of which elements we choose 
as coset multipliers. It follows from the definition that each element 
of S is divisible on the right by some element of S'. 

A. A. Albert2 and R. H. Bruck3 discussed disjoint sets called cosets 
in a system called a quasi-group. However a quasi-group is non-associa- 

2Quasi-groups I, Trans. Am. Math. Soc., Vol. 54 (1943), pp. 507-519. 

3Contribu tions to the theory of loops, Tran s. Amer. Math. Soc., Vol . 60 
( 1946), pp. 245-354. 
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tive and lacks only this property to make it a group. 
A. R. Richardson4 discussed cosets in a groupoid G. A groupoid is 

a system which is closed under a single valued binary operation. 
Associativity is not postulated. Richardson's definition of cosets of 
G w.r.t. a subset is like ours except that he permitted the presence 
in G of elements not divisible by any elements of G. If G is divided 
into cosets w.r.t. a subgroupoid B and the product of two right cosets 
is a right coset, then the quotient groupoid G/B is said to exist. Let 
U be the set of elements which observe the associative law, from any 
position, w.r.t. all the elements of G and let C be those elements of 
the center that are in U. Richardson proved that the quotient groupoid 
G/C exists. 

F. W. Levi5 discussed cosets in what h-te called R-semni-groups, but his 
definition of cosets is different from ours. 

R. R. Stoll6 proved a theorem about the division of a finite simple 
semi-group into cosets w.r.t. a subright-group. He used coset in the 
same sense that we do, but his finite simple semigroup cannot contain 
a zero element, while this is permissible in our theorem 1 which re- 
sembles Stoll's theorem. 

THEOREM 1. A finite semi-group S with a subgroup G has G as a left 
divisor group if and only if the right semi-group in S belonging to 
c with respect to G is nonvacuous for each element c in S. Furthermore 
if S is of order g and c l, c2, . . ., ch is a complete set of coset 
multipliers of the left cosets of S with respect to G of order n, then 
h 7 
E n/si = g, where s, is the right spread of ci . The "if" part of 

L= 1 

this theorem is a generalization of one due to Dr. H. S. Vandiver8. 
The hypothesis of his theorem is, If the identity element of G is a 
right identity of S. 

To prove theorem 1, first we suppose that S is a finite semi-group 
with a subgroup G, and furthermore, if c is any element whatsoever 
in S, then the right semi-group in S belonging to c w.r.t. G is non- 
vacuous. We denote the identity element of G by cl. If the coset cCG 
does not exhaust S, we let c2 be an element not in c1G. Then c2 is in 
c2G since the right semi-group of c2 in S w.r.t. G is nonvacuous. 

4Groupo i ds and th e i r au tomo rph i sms, Proc. London Math. Soc., (2) 48 
(1943/45) pp. 83-111. 

5On semi-groups, Bull. Calcutta Math. Soc., Vol. 36 (1944), pp. 144-146. 

6Representations of fini te simple semi-groups, Duke Math. Jour., Vol 11, 
(1944), pp. 251-265. 

7J. L. Dorroh first proved the "if" part of this theorem, but did not 
publish it. The writer is not familiar with the nature of his proof. 

8The elements of a theory of abstract discrete semi-groups, Viertel- 
jahrsschrift der Naturforschenden Gesellschaft in Zurich, vol. 85 (1940), 
pp. 71-86. 
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It is clear that we can exhaust S by continuing this process. Now 

cigk = cjgm 

if k / m, for if the equality held, c would be in ciG and ci, in c.G. 
The cosets are therefore mutually exciusive. 

cigkG= ciG; 

Hence the division of S into left cosets w. r. t. G is unique. Let c be 
any one of the c's. We denote by Bi a complete set of multipliers of the 
right cosets of G w. r. t. G', where G' is the right semi-group in S 
belonging to ci w.r t. G. Apparently each element in ciBi is in ci G. 
The converse is true also, for 

c g. c glb= c b 
cigj = cig k i k 

where g' is in G, and the b's are in B. The order of ciBi is the index 
of G, in G. Hence if g is the order of S, n is the order of G, si is 
the right spread of ci in G, and h is the number of distinct left 
cosets S is divided into w.r.t. G, 

h h 
i t ii1n/s g. 

z.=1 = 

Next we suppose that the semi-group S has a subgroup G as a left divisor 
group. Let the multipliers be c1, C2, ... , where cl is the identity 
of G. Then cl is in c1G. Let ci be any one of the c's; then ci is in 
some coset. If 

ci ck kgm' 

where gm is in G, then 

-1 Ck = cig 

and 

C i = cigm gm 
= 

cac.' 

We conclude that ci must be in ci G for each ci, and furthermore cl is 
a right identity for each one of the c's and therefore for S. We have 
used no assumption of finiteness in this part of the proof. 

If S is a semi-group such that the equation ax = b is solvable for 
each a and b in S, S is said to be a right-group. This terminology 
was first used by A. Suschewitsch9. It follows, that if a semi-group 

9Ueber die endlichen gruppen ohne das gesetz der eindeutigen umkehrbar- 
keit, Mathematische Annalen, Vol. 99 (1928), pp. 30-50. 
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is both a right-group and a left-group, it is a group. 
THEOREM 2. If S is a semi-group which contains a finite left 

divisor semi-group SI such that for some s of S, sS' = S', then S' is 
a right-group. Since sS' S', S' is itself a left coset; hence by the 
uniqueness part of the definition of left coset, saS' = aS' = S' for 
each a of the finite semi-group S'. Therefore the equation ax = b is 
solvable for each a and b of S' and S' is a right-group. The dual of 
this theorem is proved similarly. From the truth of the theorem and its 
dual and the fact that a semi-group which is both a right-group and a 
left-group is a group follows the 

COROLLARY. If S is a semi-group with a finite left divisor semi- 
group S' which is also a right divisor semi-group and there exist 
elements r and 1 of S such that 1S' = S'r = 8', then S' is a group. 

PART 2 

THE CONNECTION OF COSETS WITH RESIDUE CLASSES. A set of all in- 
tegers which are mutually congruent modulo m is called a residue class 
modulo m. Obviously there are exactly m distinct classes modulo m., 
and each class contains exactly one integer of the set of least residues. 
These classes form an additive group and a multiplicative semi-group 
modulo m. Since the substitution law and the right and left distributive 
laws are also valid, the residue classes modulo m form a ring. Throughout 
the following discussion, we assume m > 1. If C is a least residue such 
that each prime divisor of m divides C, we call the residue class which 
is congruent to C one of the first type. If D is a least residue such 
that some prime divisors of m, but not all of them divide D, we call the 
residue class which is congruent to D one of the second type. These 
two types, together with the units, exhaust the residue classes modulo 
m. A residue class which is made up of units is called a unit also. 

Let m = p1 p2 p. , where the p's are distinct primes and let r 
be a residue class of the first type whose least residue is A. Write 

p ip2 . .p. JD, where (D,m) = 1, k > 0. If b is the 

smallest integer such that bkt > it for each t in the range 1 > t > j, 
then b is the smallest value of x suchi that rx = 0 (mod m) and is called 
the nullifying exponent of r modulo m. Now suppose 

ry rZ (mod m), 

where b > y > z > 0. Then 

rZ(rY-Z 1) 0 (mod m). 

There fore 

rY Z 1 (mod ml), 

where mt = m/(AZ, m); then either ml = 1 or ml is the product of certain 
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prime divisors of m. But ml / 1, for this would imply rz 0 (mod m), 
which would make z > b. It is known that if (r,m) / 1, rx / 1 (mod m) 
for any x > 0; hence ml is not a multiple of prime divisors of m and 
rY / rZ (mod m). We have proved 

THEOREM 3. If b is defined as above, then b is the nullifying 
exponent of a residue class r of the first type; furthermore r generates 
a semi-group of order b, and the zero residue class is the first 
repeated one. 

Let C be the least residue of a residue class r modulo m of the 
hi h2 h cDweeh>0 D ) 1 second type such that C = pP2 ... .pCjD, where hv > , (D, m) = 1. 

i i i 
Let A = P1 Ip2 cP c m AB, r belong to n modulo m, and finally let 
b be the nullifying exponent of r modulo A. Hence (B, P1p2.. = 1. 
Also rn = 1 (mod B), and rb - 0 (mod A). Therefore 

rb+n rb (mod AB). 

I f rP rq (mod m) for b + n > p > q > 0, then rP - rq 0 (Cmod mi), 
and 

q(rP - 1) = 0 (mod B). 

Hence rp-q 1 (mod B), and p - q is a multiple of n. 
Let 

p - q kin, k1 > 1. 

Then 

rq(r 1 _ 1) = O (mod pI P2 ...pc 

k n 
Bu t C1 1 (mod Pt), 1 < t < c, by the known theorem mentioned in 
the last part of the proof of theorem 3. Therefore 

rq - 0 (mod A). 

and 

q = k2 + b, k2 > . 

We can therefore write 

p = q + kin =k2 + b + kin; 

but p < b + n. Hence k2 = 0 and k1 = 1, and the distinct elements of 
the semi-group generated by r are: r, r2, ..., rb+n- . The residue 
classes rb, rb+l, ..., rb+n1 formi a cyclic group under multiplication10 

1OF. C. Biesele, An introduction to the theory of semi-groups, Master' s 

Thesis, Univ. of Texas, (1933), p. 9. 
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THEOREM 4. If r is a residue class of the second type, it generates 
a semi-group modulo m of order b + n - 1, which contains as a subgroup 
the residue classes: 

b b+1 b+n-1 r , r , ..., r 

where b and n are defined in the proof above. 
Semi-groups of the type mentioned in theorems 3 and 4 are callel 

cyclic. Their importance in general systems has been discussed 
Type two contains as an interesting sub-type 2a, the set of residue 

classes whose least positive residues contain as divisors the highest 
powers of certain prime divisors of m, but are prime to other prime 
divisors of m. Concerning this type, we have as a corollary to theorem 
4, the 

COROLLARY. If r is a residue class of type 2a, i t generates a 
cyclic group of order n, where n is defined in the proof of theorem 2. 
This follows from the proof of the theorem, where b = 1. 

If we (denote the group of units modulo m by G, then by theorem 1 
and its dual, G is both a left and right divisor group of the semi- 

h 
group S of all the residue classes modulo m. Furthermore, E tin. 

We shall obtain two methods for getting the t's and the s's connected 
with the coset multipliers. Let ai be any element of S and x be any 
element of '. such that 

aix ai(mod m). 

then 

x = 1 (mod m/(ai,m)). 

This gives us a way of finding si and therefore ti , since ti = n/si. 
On the other hand, if g, and g2 are two elements in G such that 

aig- aig2 (mod m), 

then 

g2 (mod m/(ai, m)), 

which gives us a way of finding the distinct elements of the coset 
aiG, and therefore ti and si. 

Let the semi- group S of residue classes modulo m contain S' as a 
left divisor semi-group. Then since S has an identity e such that eS' = 
S', and since S' is also a right divisor semi-group, S' is a group by 
the corollary to theorem 2. But by what we proved in the second part 

I1H. S. Vandiver, Bull. Am. Math. Soc., Vol. 40 (1934), pp. 914-920; 
Am. Math. Monthly, Vol. 46, (1939), pp. 22-26. 
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of the proof of theorem 1, the identity of S' is an identity for each 
of the elements of S. Since ar = 1 (mod m) imnplies (a, m) = 1, the 
group of units modulo m contains each subgroup of S which has 1 as 
its identity. This proves 

THEOREM 5. A semi-group S of residue classes modulo m contains no 
left divisor semi-group not contained in the subgroup of units. 

PART 3 
FACTORIZATION IN THE MULTIPLICATIVE SEMI-GROUP OF RESIDUE CLASSES 

MODULO m. The elements of the ring modulo m which are not units are 
called non-units. The units are denoted by g's. Their least residues 
are denoted by u's, v's, and w's. If G is the set of units and a is a 
non-unit, then the elements of the coset aG are called associates of one 
another. A Prime is a non-unit residue class which contains no divisors 
other than itself and its associates. Capital letters are used to 
distinguish Primes from the primes of arithmetic. Evidently the product 
of units is a unit and if any factor of a product is a non-unit, the 
product is also. A set of elements are called Relatively Prime if no 
two of them have a common non-unit divisor. H. S. Vandiver 2 proved 
that the distinct Primes modulo m are the elements whose least residues 
are prime divisors of m, together with their associates. The Primes 
modulo m are denoted by capital letters, P, Q, R, and S, while the 
arithmetic primes are denoted by the small letters, p, q, r, and s. 

Since the least residues modLulo m represent a complete set of residue 
classes, each element of the ring of residue classes modulo m can be 
factored into Primes and units. Suppose two factorizations of the 
non-unit nk into Primes and units are PAP2 ... Pc. g and Q1Q2 . d Q 9g2 
By commuting the factors if necessary and using the definition of 
associates, we can write these in the forms 

(1) RaXRa2 ... R ax.g and Sbl Sb2 ..a. Sb Yg 1 2 x 94 1 2 Y 5 

where the R's are Relatively Prime and likewise the S's. If each of 
the R'as is an associate of an Sb and conversely, then x = y. And 
nk is said to have a unique factorization into Primes and units. 

LEMMA. If pb, for b > 0, is the largest power of the prime p 
which divides m and if p is the least residue of-P, then no two distinct 
elements of the set,P, p2, . ., pb are associates. If there are other 
elements in the semi-group generated by P, they are associates of pb, 
If Pi and Pi are associates, where j < i < b then 

pa gPJ (mod m), 

and 

12Theory of finite algebras, Transactions of the American Mathematical 
Society, Vol. 13, (1912) pp. 293-304. 
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pj(pZi - g) = O (mod m). 

Hence 

g-1pi-j 1 (mod m/(pi,m)), 

and P'i is a unit-modulo m/(p3,m). But since j < i < b it follows 
that i j, and no two distinct elements of the set P, p2, . pb are 
associates. To prove the second part of the theorem, we note first that 
if m = pb, the set mentioned above exhausts the semi-group generated 
by P. If m = pbmj, ml / 1, let u1 = m1 + p and p belong to n modulo ml. 
Then (uj, Pml) = (ui, p) = 1, and ul is the least residue of a unit 
modulo mn. Therefore 

b+i 
p ulpb (mod m), 

and 

pb+i (ul )ipb (mod m) 

for i > 1. Hence the elements of the set PZ, b < z < b + n - 1 are 
all associates. We note that n divides the order of the group of units 
modulo m/p 

THEOREM 6. Each of the non-unit elements of the ring of residue 
classes modulo m has a unique factorization into Primes and units, 
Any two factorizationst3 of a non-unit nk into Primes and units can 
be written in the forms (1). Since each of the R's and S's is congruent 
to an element of the type pv, where p is a prime divisor of m and v is 
the least residue of a unit, we can write (1) as 

(2) (r 1 )a, 
(r,v,)a2.. . x(rj, Xu4 and 

(sl wl) 
bi 

(s2w2) b2. .. (s w ) Y. u1 

where the r's and s's are prime divisors of m and the v's and w's are 
prime to m. Since the members of (2) are factorizations of nk, they 
are congruent; and each r is some s and conversely. Hence x = y and 
(2) may be written as 

(3) (rlv,) a(r2v 2.. .(rXvx) Xu4 and 

(r w1) 
b 

(r2w2) ... (r w,) x.u5. 

13The number of distinct solutions of the congruence a= x1x2.. .xr+1 
(mod m) was discussed by B. Gyires, Uber die faktorisation im rest- 
klassenring mod m, Publicationes Mathematicae, Vol. 1 (1949), pp. 51-55. 

But Gyires did not discuss unique factorization. 
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It follows from the lemma that if a, > bi > b where b is the largest 
a. b. 

power of ri dividing m, then (rivi ) ' is an associate of (riwi ) . 

On the other hand if aj and bj are exponents such that aj < bj < b, 
where rb is the largest power of r. which divides m, we can write a 
congruence from the two members of (3): 

a. b . 
r. E - rjI F (modl m), 

where (rj, E) = (r, F) = 1. Hence 

b a. aj E r.1 1F (mod m/(r m)) 

and b. = a. since r. divides m/(r aj,m) for a. < b. Hence nk has a 
unique factorization into Primes and units. 

PART 4 

SOME GENERALIZATIONS OF THEOREMS CONCERNING COSETS IN GROUPS. 
A subgroup G' of a group G is said to be invariant in G if a1'G'a =G' 
for each a in G. Obviously G' is invariant in G if and only if aG' = G'a 
for each a in G. A subsemi-group S' of a semi-group S is said to be 
invariant in S if aS' = S'a for each a in S. If S1 and S2 are subsets 
of S, by S1S2 we mean the set of elements sis where si andl si range 
independently over S1 and S2, respectively. 

THEOREM 7. If a semi-group is divided into cosets with respect to 
a left divisor group G, a necessary and sufficient condition that two 
left cosets aG and bG be identical is that a = bg, where g is in G. 
Suppose that a = bg, where g is in G. Then a is in bG. But a is in aG, 
since the identity of G is a right identity of the given semi-group. 
Hence aG is bG, since the cosets are mutually exclusive. On the other 
hand if the cosets aG and bG are identical, then since the identity 
of G is a right identity for a and b also, a and b are both in bG. 
Then a = bg, where g is in G. 

The cosets of an invariant subgroup of a group form a group of 
cosets. Similarly it is obvious that if a semi-group S contains an 
invariant subsemi-group S' such that 8'S' = S', then all the cosets 
of S' in S form a semi-group under coset multiplication. 

If a left divisor subsemi-group of a semi-group S is invariant in 
S, we call it a divisor semi-group. 

THEOREM 8. Let S be a semi-group which contains a divisor group 
G. Then if the coset semi-group S/G is a group, S is itself a group. 
Let cl , c2, ..., cm be a complete set of coset multipliers. G is the 

identity coset of S/G; and since S/G is a group, each c G has a unique 
inverse cIG such that 

c G cjG = cjG ciG = c.c.G = c.c.G = G. 
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Hence ci cj = gt and Cjc i = g2 where g, and g2 are both in G, and we 
may write cj(cjg-') = e and (g_1c )ci = e where e is the identity of 
G and therefore of S. It is known that if a semi-group has an identity 
and every element has an inverse, then the semi-group is a group. Hence 
since each element of S can be used as a coset multiplier, S is a group. 

COROLLARY. Let S be a semi-group with a divisor group G such that 
the coset semi-group S/G is a group. Then for each coset multiplier 
ci of a complete set of coset multipliers cl, c2, ..., cm, there is 
a unique c . and a unique ck of the c 's such that c c. and ckcI are 
elements of G. In fact c. is ck. We showed the existence of a c. satis- 
fying both the condition on cj and ck in the proof of the last theorem. 
Suppose there is a cj such that 

cicc = 3 

where g3 is in G. Then, using the notation in the proof of theorem 8, 
and the fact that S is a group 

cj = C. 4, 

where g4 is in G. By theorem 7, cj is c.. Similarly ci has only one 

left multiplier among the c's such that the product is in G. 
An element is said to be homogeneous14 in a semi-group S if it is 

the product of two elements of S. If every element of S is homogeneous 
in S, S is said to be homogeneous. It is clear that an element of a 
subsemi-group S' of S which is homogeneous in S' is also homogeneous 
in S, but the converse is not necessarily true. Obviously, if S contains 
a left divisor semi-group, S is homogeneous and furthermore SS S. 
If I is a subset of a semi-group S such that SI is contained in I, 
then I is called a left ideal of S. If I is both a left and right ideal 
of S, it follows from the definition that I is a semi-group. 

Suppose a semi-group S contains a finite homogeneous subsemi-group S' 
as a left divisor semi-group. Choose any element c1 of S' as a coset 
multiplier. Then 

CiS' = CsS'S 

for each c s' of cjS'. Hence c-S' is a right ideal of S'. Since S' 
is a homogeneous left divisor semi-group of S, every element of S' is 
in a left coset with an element of S' as a multiplier, and we can 
exhaust S' by such cosets in such a way that they are disjoint. Further- 
more, since S' is a semi-group, none of these cosets contain any elements 
outside of S'. We state our results as 

THEOREM 9. Let a semi-group contain a finite homogeneous subsemi- 

14A. R. Richardson, Groupoids and their automorphisms, Proceedings of 
the London Mathematical Society, Vol. 48 (1943/45), p 96. 
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group S' as a left divisor semi-group. Then S' consists of a set of 
disjoint right ideals. 

Since S' is homogeneous, S'S' = S'. If S' is also invariant in the 
given semi-group it follows from the remark before theorem 8 that 
the cosets of S w.r.t. S' form a semi-group. Therefore 

m n m n 

for each pair of the coset ideals. Therefore, there is only one coset 
of S' and that is S' itself. Consequently 

sIS = St Sos 

for each s' of S' and S' is a group. This proves the 
COROLLARY. If a semii-group contains S' as a f innite homogeneous 

divisor semi-group, then S' is a group. 
It is known that if a group G contains a subgroup G' such that G/G' 

is a group, then G' is invariant in G. An obvious extension to semi- 
groups is: if the semi-group S contains a left and right divisor group 
G such that the product of two left cosets is a left coset and the 
product of two right cosets is a right coset, then G is invariant in S. 

University of Texas 
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POWERS OF SUMS AND SUMS OF POWERS 

Pedro A. Piza 

Since ancient times the sums of the powers of positive integers 
and the study of the properties of power sums has attracted the attention 
of arithmeticians. Chapter XIV of Edouar1 Lucas' Theorie des Nombres, 
published in Paris in 1891, contains an excellent survey of this general 
theory and its history. 

Many notable relations concerning the sums of powers are expounded 
in Lucas' book, due to a galaxy of mathematicians of all the ages 
including Fibonacci, Fermat, Pascal, Newton, Bachet, Fuler, Roberval, 
Abel, Jacobi, Radicke, Adams, Staudt, Clausen, Stern, Genocchi, Lacroix, 
Cesaro, Stirling, Boole, and Lucas hiimself. 

Particularly celebrated are Jacques Bernoulli's classical formulas, 
x 

published in 1712 in Ars Conjectandi, wherein the values of a an 
a=1 

are given as power functions of x, such as 

x 
2 6 = (1/7)x7 + (1/2)x6 + (1/2)x5 - (1/6)x3 + (1/42 )x. 

a=1 

x 

E a7 = (1/8)x8 + (1/2)x7 + (7/12)x6 - (7/24)x4 + (1/12)x2. 
a 1 

In this paper we propose to present and to prove some fundamental 
theorems on power suml.S, which this author considers to be new, by which 
Bernoulli's formulas and other known attributes of the sums of powers 
are easily derived, and new properties developed. 

We begin by stating and demonstrating 
Theorem A 

The n-th power of the sum of the first x integers, is equal to 
the arithmetical mean of the 2n-1 sums of powers contained in 
the summation 

[26 ] n i a 2n+ 1 -2b 
b=t .2b ~ )a=1 

This theorem is formulated as follows: 

x b- L2b - I 2 a2f+12b 

(1) ( E a)n = I 2n 3 

137 
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which formula is to be proved to constitute an identity for arbitrary 
values of the integers n and x. 

x 
It is known that E a = x(x + 1)/2 = (x2 + x)/2. 

a=1 
Hence (1) may be written in the form 

(2).. (x2 )n = 2 b[2b a2n+12b 

Let n be any p)ositive integer. When x = 1, 

x a2n+1-2b=1 
Z a4' ' 1 

a 1 

for all values of n and b. Therefore we are to prove that 

ro n 
( 3 ) . . 2"= 2b ~ I -(,2b2 12 . 

We have (1 + l)n = b [ 2 + E [2 b 2 1 " 
b-= I 2b - 2 b=1 2 b -11 

( l ~ l ) b=l 02 b - 2,2 b-= 1 [2 b J, 
Subtracting we get (3). 

Suppose that (2) is true when x = z 1, z > 2, so that 

(z2 z)n = 2 y [ 2 a n a2n+ 1 -2 b 
b= 2b - l a=1 

Add to each member of this equation the function 

2 E [bn 1 z2n+12b 
b-= 1 12 b 1 l 

and we obtain imnlediately 

z 
(Z2 + 2)5 2 X a 

b =1 2b 1J a = 1 

which proves that (2) is also true when x = z. This completes the 
demonstration of Theorem A by mathematical induction. 

If for the sake of brevity the Lucas notation for arbitrary x 

x 
E an = S 

a=1 n 

is used, we express formula (2) in the form of identities for the first 
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1952) POWERS OF SUMS AND SUMS OF POWERS 139 

few values of n, as follows: 

(4).. (x2+ x) /2 S1 
(x2 + X)2/2 = 2S3 

(x2 + x) 3/2= 3S5 + S3 
(X2 + x)4/2= 4S7 + 4S5 

(X2 + X)5/2 = 5S9 + lOS7 + S5 

(X2 + x)6/2- 6S1 1+ 20S9 + 6S7 

(x2+ x)7/2= 7S13+ 35S1 t+ 21S9 + S7 
(x2+ X)8/2 8S 5+ 56S13+ 56S11 + 8Ss 

(x2 + x)9/2= 9S17+ 84S15+ 126S13 + 36S1 I + Sg 
(x2 + x)'0/2 = lOS19+ 120S1 7+ 252S1 + 120S + lOs 

and so forth. 

Since S3 = (S1 )2, we are able to state the following corollary 

Theorem B 
The n-th power of the sum of the first x cubes, is equal to the 
arithmetical mean of the 22n-1 sums of powers contained in the 
summation 

E 2 a 4 n + 2 b, 
b=1 2b - 1L a=1 

We formulate this theorem thus: 

Eco 2n x nlo 
x x b=1 2b - 1 a= 1 

(5).. ( 2 a)2n = ( 2 a3)n I2n-1 
a=1 a=l 2 

There is an infinitude of such relations corollary to Theorem A. 
For instance 

E ( a3 + 3a5 ) n E 2 a 6 an + I1 2 b 
( a = i _ b= 1 _ 2b a 1J I__ 

a=1 4 9 

Theorems A and B concern sums of odd powers. We have also found 
similar relations concerning the sums of even powers, which may be 
stated as 

Theorem C 
(2x + 1) times the n-th power of the sum of the first x integers, 

is equal to the arithmetical mean of the 3d2n-1 sums of powers contained 
in the summations 

This content downloaded from 144.32.128.70 on Thu, 21 Jan 2016 01:50:14 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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b=lLiInb- 3] + [2 b f] an-2+2b when n is even, or 
b=l Ll2b - 3, -2b - 2a1a=, 

b L - 2] 0 [n++ 2 a=1 when n is odd. 
b=i 2b - 2 2b - 1, |a=i 

For n = 2r and n = 2r + 1, ThLeorem C is formulated respectively as 
follows: 

(6). . (2x + 1) 2 + X)2r= 

2 r0 [b2r 3 + F 2i1aa2rx2+2b 
b=1l 12b - 3, t2b - 2-,a= I 

(7). *(2x + 1X2 + X)2r+l = 

2 2[ + J - 2 1 a1 
b=l1[ 2b - 2 2b - 1 a= 2 

We shall prove (6) by induction with respect to x. and it wiil be 
obvious that (7) can be proved in a similar manner. Let r be any integer. 

When x = 1, (6) becomes 

322r = 2r + 2[ 2r1 

= 422r-1 + 2*22r-1 
- 

22r+i + 22r = 22 r + 1) 

Suppose that (6) is true when x = z - 1, z > 2, so that 

(2z - 1)-(z2 - z)2r = 2z(z - Z2 )2r - (z - Z2)2r 

2 [ z2r+- 2 ] [ z2r+2 + 2r z2 r+ 3 2 [2r z2r r4+2[ 2r+5 

[ z2r + [21]z 2r+I - [ 21 2 +2 + [2r]z2r+3 
2 [ r r+z + 

co 2rr2r z1 
b=1L [2b - 3 22b - 21 a=1 

Aid to each member the function 
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b -1L0t2b - 3 + 2b - 2 r22 

and right away we get 

2z(z + z2)2r + (z + Z2)2r = (2z + 1)(z2 + Z)2r 

b=1 [ 2b - 3 + 2b - 2Ja1 a2r=2+2b 

which proves that (6) is true when x = z, completing the demonstration. 
[To prove (7) in the same way, write its first member, when x = z - 1, 

in the form (1 - 2z)(z - z2)2r+1 . 
For the first few values of r, the following identities are obtained 

with formulas (6) and (7): 

(8).. (2x + 1)(x2 + x) /2 = 3S2 
(2x + 1)(x2 + X)2/2 = S2 + 5S4 
(2x + 1)(x2 + x)3/2 = 5S4 + 7S6 

(2x + 1)(x2 + x)4/2 = S4 + 14S6 + 9s8 

(2x + 1)(x2 + x)5/2 = 7S6 + 30S8 + llS1o 
(2x + 1 ) (X2 + X)6/2 = S6 + 27S8 + 55S,0 + 13812 

(2x + 1)(x2 + x)7/2 = 9S8 + 77S1O + 9182 + 15S14 

and so forth. 

It is clear that we are able to solve recurrently for any Sn as 
a function of x, by considering the identities in (4) and in (8) as 
simultaneous equations. Better still they can be solved as functions 
of x2 + x = y. For instance with (4) we get 

S3 = (1/4)y2 

3S5 = (1/2 )y3- (1/4)y2 

s5 = (1/6)y3- (1/12)y2 
4S7 = (1/2 )y4 - 4[(1/6)y3 _ (1/12 )y2] 
S7 = (1/8)y4 - (1/6)y3 + (1/12)y2. 

and so forth. 

Upon substituting x2 + x for y we now get S7 as a function of x 
as follows: 

S7 = (1/8)(x2 + x)4 - (1/6)(x2 + x)3 + (1/12)(x2 + x) 

= (1/8)x8 + (1/2)x7 + (7/12)x6 _ (7/24)x4 + (1/12)x2, 
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which is Bernoulli's formula. 
In the samte manner the identities in (8) may be solved as simultaneous 

equations to get any S2r as a function of x and of y. For instance 

S2 = (2x + 1)[ (l/6)y I 
5s4 = (2x + 1) [ (l/2)y2 - (1/6)y] 

S4 = (2x + 1)[(1/11)y2 - (1/30)y] 

7S6 = (2x + l)[ (1/2)y3 - (1/2)y2 + (1/6)y] 

s6 = (2x + 1)[(1/14)y3 - 0(/14)y2 + (1/42)y] 

and so forth. 

Again substituting x2 + x for y, Bernoulli's formula is obtained: 

S6 (2x + 1) [(1/14)(x2 + X)3 - (1/14)(X2 + X)2 + (1/42)(X2 + X)] 

(1/7)x7 + (1/2)x6 + (1/2)xW - (1/6)x3 + (1/42)x. 

Note that by making n = 2 in formula (5) we h-ave 

2(S3 )2 = S5 + S7, 

which is a relation first found by Jacobi in 1863, of which formula (5) 
is a generalization. (See Lucas' Theorie des Nombres, p. 233). 

Also by squaring the formula 

S2 = (2x + 1)(1/6)y 
we get 

(S2)2 = (2x + 1)2(1/36)y2 = (4y + 1)(1/36)y2 = (1/9)y3 + (1/36)y2. 

Substituting now the values in (4) 

y = 4S y3 = 6S + 2S 
3' 5 3' 

we obtain 

(S2 )2 = [6S5 + 3S3]/9. 

Hence 

3(S2)2 - 2S5 + S3, 

which is again another formula given by Lucas. 

By expressing (y 4 + y2)2/4 = (y4 - y2)2/4 + (2y3)2/4 in terms of 
sums of powers, a family of Pythagorean triangles can be formulated 
thus: 

(2S7 + 2S5 + S 3)2 = (2S7 + 2S5 - S3 )2 + (3S5 + S3 )2. 
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THE NON-EUCL I DEAN PROJECTI LE 
Curtis M. Fiilton 

The principal object of this paper is to show that the path of a 
projectile in the Hfyperbolic Space is, in general, a parabola. For this 
purpose it is essential to develop expressions for the acceleration 
in a suitable coordinate system. 

Through a fixed point C), let there be given three directed axes, 
numbered 1, 2, 3, mutually perpendicular. WVe define the direction angles 
a, /3, y of a radius vector OP in the usual way. Then sinh OP cos a, 
sinh OP cos /3, sinh OP cos y will be the Weierstrass' coordinates of 
P and the (lirection cosines satisfy the relation 

( 1 ) cos2a + cos2/ + cos27 = 1 

[2, p. 68 and 5, p. 861. Now we introduce limiting surface coordinates 
x, y, z as follows: 

(2) e x = cosh OP - sinh OP cos a, e- y sinh OP cos 

e-x z = sinh OP cos y 

[Cf. 4, p. 97 and 8, p. 1651. Here x = const. represents a family of 
limiting surfaces or horospheres that intersect the 1-axis perpendicular- 
ly at a point whose directed distance from 0 is x. The second family, 
y = const., consists of planes perpendicular to the 12-plane and parallel 
to the 31-plane. Similarly, z = const. is a family of planes per- 
pendicular to the 31-plane and parallel to the 12-plane. We thus have 
a triply orthogonal system of surfaces which intersect in limiting 
curves and parallels to the i-axis respectively. The variable x measures 
distances along these parallels, while e-Xy and e-Xz determine directed 
distances on the respective limiting curves. 

Let P(x, y, z) and P1 (xl, y1I z1 ) be any two points and consider the 
directed line segment PP1. We now imagine three axes through P, tangent 
to the coordinate curves and therefore mutually perpendicular. General- 
izing (2) we obtain the following relations, involving the direction 
cosines withl respect to the new system 

(3) -(Xl-X) = cosh PP -sinh PP cos 

(4) eXl(y1 - Y) = sinh PP1 cos /, 

eX x(z I - z) = sinh PP1 cos y. 

Hence, by a simple manipulation, because of (1), 

143 
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(5) cosh PP1 = cosh(x - x) + 1/2 eXI-X[(y Iy)2 + (Zl 
- Z)2] 

(6) sinh PP1 cos a = sinh (x1 - x) 

+ 1/2 e x1x[(y,1 y)2 + (Z I z)2]. 

The equations x = x( t), y = y( t), z = z(t), where t is time, deter- 
mine the motion of a particle in a curve and we shall assune, that these 
functions are twice differentiable. If P and P1 correspond to t and 
t + At, respectively, we diivide (5) by At2 and find an expression for 

PP1 
lim - - which we denote by s. Thus, 

?2t-o At 

(7) e2 = -2 + + )X 

the dots indicating differentiation with respect to t. Clearly, s will 
be the magnitude of the velocity and integration will yield the arc 
length s. The limiting position of PP1 is found dividing (6) and (4) by 
At and passing to the limit as At 0 0. By this procedure we have for the 
direction cosines of the tangent line, which we indicate by means of 
the subscript T, 

(8) s cos a3T c { s cT 
= e y, s cos 'YT e ze` 

In order to define acceleration, we determine the point P2(x2, Y2, Z2) 

on the tangent to the curve at P so, that PP2 = Ats and the direction 
of PP2 coincides with that of increasing values of t. Using (3) and 
(4) and taking the direction cosines from (8), we see that the co- 
ordinates of P2 are given by 

- X X) x 
e cosh (Ats) . sinh (Ats), 

S 

y sinh (Ats ) 
Y2 Y s cosh (Ats ) - x sinh (EAts) 

z sinh (Ats) 
Z 2 .? cosh (Ats) - x sinh (At.) 

Now, making use of these equations and, where necessary, of (7), the 
existence of the following limits may be shown without difficulty: 

lii 2(xl - ) = x + eX2x(22 + 
t-. 0 ~ ~ -2(2 Z) 0 +e 
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A\t @0 t2 

lim 2(Z1 - Z2) _ z 2xz 

At -.O 2 

Also, because of (5), the existence of 

22P P 
lim 2 1 

At -o t2 

will be secured and we define a to be the acceleration. Let us forego 
the explicit expression for a and write the direction cosines of the 
limiting position of the directed line segment P2P1 . Using (6) and 
(4) we have 

a cosCA X + e+ 2 

(9) a cose3A x( 

a cosYA = e z 

the subscript A indicating the direction of the acceleration. 

The above results may be obtained from an entirely different point 
of view in Differential Geometry, postulating Lagrange's equations 
of motion [3, p. 106 and 6, p. 101. In [4, p. 1271 no clear definition 
of acceleration seems to appear. If in our definition we especially 
set t - s, we are led to the curvature I [1, p. 603]. Using (8) and 
(9) we find by familiar methods R 

S2 
a cosa8 = cos- v + c os8T 

ac?,A R cosaN + s cosa7T 
a oIA coR 

3 

a c osyA _ scosyN + s cosyT7 

where the subscript N indicates the direction of curvature, which is 
normal to the tangent. 

We now assume that the acceleration of gravity acts in the direction 
of the x-coordinate, i.e. perpendicular to the limiting surfaces 
x = constant. Its magnitude will be ge2x with a constant g, since it is 
proportional to the number of lines of force piercing a square unit of a 
limiting surface. A consideration of the potential energy [4, p. 131] 
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would lead to the same expression. Thus we are ready to set up our 
equations of motion, based on (9): 

x+ 2x(2 + 2) 2x + e ge 2 

e x(. - 2 0y) = , 

ex( " - 2xz) = 0. 

It is readily seen, that on account of the last two equations, e 2y and 
e Xz are equal to arbitrary constants. Hence y and z satisfy a linear 
equation, which represents a plane cutting the horosphere x = 0 orthog- 
onally. We may assume, without loss of generality, that this is the plane 
z = 0, in which x and y are liiating curve coordinates [8, p. 1651. The 
remaining differential equations are 

x + e-2 = ge2 eXy y) = O. 

For a more detailed classification of the solutions we are going to have, 
see [2, p. 1421 , [4, p. 911, and [7, p. 2581. It mighit also be useful to 
change the resulting equations back to Weierstrass' coordinates, using 
(2). We first find e-2X5 = C1, C1 being an arbitrary constant. If C1 = O, 
the path is a straight line; we now assume C1 A 0. If we substitute 
in our first equation, we obtain by integration 

x2= (g 2 Ce2x + C2 

with a second arbitrary constant C2. If g - = 0 and C2 = 0, we have 
limiting curves. If g - C1 = 0 and C2 A 0, we find eliminating t and 
integrating C 

Y = ? 1 e2X + C3, 
2 C2 

where C3 is another arbitrary constant. Such an equation represents an 
osculating parabola. Assuming that g - C2 / 0, integration will yield 

C2 2_ _ c2~~~ c2 
_ (C 

)2 e2X + C1 2 

g -C1 (g - C 1)- 

We can distinguishi between the following cases: 

g - C2 > O, C2 > 0, hyperbolic parabola, two branches, 

g - C1 <OQ, C2 > 0, lyperbolic parabola, one branch, 

g - Cl > O, C2 < O, elliptic parabola, 

g - C1 > O, C2 = O, equidistant curve, two branches. 
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THE PERSONAL SIDE OF MATHEMATICS 
This department desires especially articles showing what mathematics means 

to people in various professions and historical articles showing what classic 
mathematics meant to those who developed it. Material intended for this 
Department should be sent to the Mlathematics i;,lagazine, 14068 Van Nuys Blvd., 
Pacoima, California. 

MATHEMATICS AND THE SPACE-TIME PROBLEM 

Roger Osborn 

fHerein is chronicled a triumph of that often vilified creature, the 
pure mathematician. This mathematician made a discovery which changed 
the world's course. One might argue that it would have been changed 
anyway, but the fact remains that it was changed because of this dis- 
covery. This world shaking discovery was the 1evelopment of non-Fuclidean 
geometry just over one hundred years ago. Much has been written about 
this discovery and development in its relation to mathematics. Here, 
then, is an account of its effect on space and time philosophies, the 
changes in which have brought about the evolution of the theory of 
relativity. 

In order to see how this discovery affected the ideas of space and 
time it is necessary to review the development of space and time phi- 
losophies. It appears that there can be three broad divisions made into 
which almost all philosophies of the nature of space and time will fall. 
Some individual philosophies overlap two of these divisions. Taken 
in the orcer in which they occurred historically, the divisions are: 
(a) God, (b) Absolute, and (c) Relative. Early plhilosophers concerned 
with the problem of space and time identified them withi God Himself. 
Later came the concept that absolute space and absolute time exist 
independent of any experience of space or time and can not be experienced 
in thenmselves. Lastly, came the relative philosophies. These in turn 
can be divided roughly into three divisions which might be called 
theories of (1) conceptual, (2) perceptual, and (3) physical space and 
time. The first two of these are subjective, the first more so than 
the second, if it can be said that there are degrees of subjectivity. 
Conceptual space, for example, can be any space (whatever space may be) 
which the individual may conceive. All mathematical spaces are con- 
ceptual. Here is the first inkling of the effect that the development 
of non-Euclidean geometry was to have. Perceptual space is that space 
which the individual uses as a frame of reference when perceiving the 
external world. Physical space is perceptual in nature, but it should 
have features which are the same for all individual observers. It is 
listed among the relative spaces since even it is relative to the 
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position of the observer. Similar explanations might be given for 
conceptual time, perceptual time, and physical time. 

These divisions of the philosophies of space and time lead up to 
modern times. During this century philosophy has taken a new turn, 
occasionally suggested before. It seems in the light of modern thought 
that we live in a world immersed in a space-time system rather than 
in a system of space and time. The philosoplhy of a space-time system 
is basic to the theory of relativity, and hence it could be said to 
be a relative philosophy, but not in the earlier sense. 

All of the above classifications of philosophies of space and time 
deal with the nature of space and time. Another classification could 
be set up in which philosophies would be classified according to the 
manner in which they claim the ideas of space and time are derived. 
Some claim these ideas are innate. hlis type of philosophy is no longer 
held in high esteem. Others- claim these ideas are given a priori, but 
are not inborn - they come simultaneous with the first experiences. 
Still others claim they are abstractions from the ideas obtained from 
sense-experience. Finally, there are those philosophies which claim 
that the ideas of space and timre are abstractions from a more complex 
system which is presented to the mind in some manner. All philosophies, 
except those claiming the ideas of space and time are given innately 
or a priori, include some feature which implies that the mind itself 
must supply some motive force in obtaining these ideas. (This may be 
noticed in the philosophy of Sir Arthur Eddington mentioned later in 
the paper). In this sense, at least, all of these philosophies of 
space and time or of space-time are subjective. 

Still another division of types of philosophies of space and time 
can be had by considering the composition of space and time. Some 
philosophies consider them as being composed of an infinite number of 
infinitesimally small points (from which extension is derived) and 
instants (from which time is derived). Others take the whole of space 
and tine to be given and obtain parts of this whole only by abstraction. 
Still others take a middle position, claiming that the basic elements 
of space and time are chunks of extension and duration. All divisions 
of these chunks of durations are abstractions, and the totality of 
space and time, whether finite or infinite, is obtained by the accretion 
of these appreciable chunks or durations. 

An insight may be had into the great change in space-time philosophies 
if there is an understanding of the philosophies which preceded and 
followed the discovery of non-Euclidean geometry. This may be ac- 
complished by reviewing the philosophies of various individuals. The 
following paragraphs will be devoted to a group of fairly brief sum- 
maries of some of the views of various philosophers and physical 
scientists on the subjects of space and t-ime, their meanings, and the 
means by which we apprehend or perceive them. These philosophies can 
be classified generally in one or more of the ways given above. No 
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claim is male for completeness in the summrary of any one person's views, 
rior is it claimed that a valid cross section of all writers has been 
made. Some authors spend more time and energy in explaining their 
views of space than of time and vice versa. Included in the summaries 
are impressions of this writer as well as those of other commentators. 
It is not the purpose of this section to give arguments for or against 
any of the views here summarized. 

The first modern to discuss the nature of space and time was Nicholas 
de Cusa (1401-1464). Hle held that they are products of the mind and 
hence are inferior in reality to the mind creating them. [VI, p. 59] 1 
Isaac Barrow (1630-1677) was Sir Isaac Newton's teacher. For him space 
is a limnitless immovable substratum of the universe and time is a 
capacity or possibility of permanent existence. [XII. p. 501 Hlis was 
the first clear exposition of the doctrine of absolute space and time. 

Sir Isaac Newton (1642-1727) fostered the belief that space and time 
are, hy the will of Gol, existent in and by themselves, independent 
alike of the mind which apprehends them, and of the objects with which 
they are occupiel. [I, p. 2111 In addition to being in(lependent of the 
percipient mind, they do not even come under the observation of our 
senses. [XII, p. 531 Hle did not define space and time, taking them as 
being well known to all. [I, p. 1821 Tle did say, though, that, "by 
existing always and everywhere, God constitutes duration and space. 
[Ix, p. 505] 

Gottfried Wilhelm Leibnitz (1646-1716) believed space and time 
exist only relative to objects and not in their own right. Space is 
the arrangement of things that co-exist and time is the arrangement 
of thlings that succeed one another. Space and time are conceptual or 
perceptual, but physical space has no real existence. [VI, p. 59] They 
are abstracted from our confused sense-perceptions of the relations of 
real things. [I, p. 2111 

Irrmanuel Kant (1724-1804) believed that space has no real existence 
of its own but is suppliel by the mind as a framework for the arrangenent 
of objects. Also, time has no real existence. Whereas space serves for 
the representation of external perceptions, time serves for the repre- 
sentation of internal perceptions. [VI, p. 59] Even though time is not 
itself real, the consciousness of time, in our apprehension of change, 
is real, and the same is true for space. [T, p. 2111 This does not imply 
that the ideas of space and time are inborn. They are products of the 
rmiind (but not abstractions) given in accordance with unchanging laws 
by which the mind coordinates sensations. [XII, p. 72] That which does 
not conformn to the forms of space and tinme cannot be experienced. 
[XII, pp. 73-741 

At this stage of levelopment there finally appeared the discovery 
of non-Euclidean geometry with its manifold effects. The works of 
Lobachevski andl Bolyai appeare(d almost simultaneously, the former in 

1Rloman numerals refer to the bibliography. 
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1829 and the latter in 1832. Through them mathematicians and philosophers 
were able to realize that space was not necessarily Euclidean. They 
found that there were mathematical spaces and physical spaces, and that 
their properties need not coincide. Their eyes were opened to the fact 
that any space which could be describecd mathematically might contain 
a space concept which could better describe the physical world. [XI It 
was this break which finally ledi physicists and philosophers to see 
that certain physical phenomena miglht be able to be explained on the 
basis of some new conception of space which were not able to be explain- 
ed on the basis of the old. Thus was born the theory of relativity. 
The following paragraphs outline the philosophies of some of the 
philosophers, psychologists, and scientists who have developed the 
philosophy of relative space and time. 

William Jarrles (1842-1910) as a psychologist, had more to say relative 
to our moles of becoming aware of time than many philosophers. He 
contended that the unit of composition of our perception of time is 
a duration block which is perceivedl as a whole. Time grows by the 
accumulation of these finite pieces of time - these duration blocks. 
[VIII, p. 281] 

Alfred North Whitehead (1861-1947) wrote so extensively on his 
philosophy of space and time, that a brief summary of his position 
seems almost to be impossible. Whitehead held the view that space and 
time are not real in themselves, but that we abstract ideas of space 
and time from events which possess ultimate reality. These events are 
not atomic. [VII, p. 21 JTe saidl that we are not directly aware of 
"points" and " instants", but that these are abstractions from the 
general relation of extension among events of which we are directly 
and empirically aware. [vii, pp. 4-51 We cannot obtain an idea of 
infinite, unchangeable space from direct observation. [XIv, p. 1921 The 
primary, most concrete element of space is the volume, and that of time 
is the duration. [XV, p. 951 The idea of space is to be found in the 
relation of events discernible now, and that of time in the relation of 
other events to those discernible now. [XIII, p. 531 Even though space 
and time are abstractions from space-time, time is not space-like and 
vice versa. [XI, p. 219] 

Hermanri Minkowski (1864-1909) was a Polish mathematician, who, in 
1908, state(d the whole content of the theory of relativity in a new 
and elegant form. Previously, it had been thought that the laws of 
nature described physical phenomena which occurred in a three-dimensional 
space, while time flowed uniformly on in another anl different dimension. 
Minkowski proposed that this extra (fourth) dimension is not independent 
of the three dimensions of space. [le introduced a new four-dimensional 
space in which the ordinarily conceived space contributes three di- 
mensions and time one. This may be called space-time. Every point of 
space-time is immersed in three dimensions of ordinary space and one 
dimension of time, and so represents the position of a particle in 
ordinary space at a particular instant of time. The succession of 
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positions which a particle occupies in ordinary space at a succession 
of instants of time is represented by a line in space-time. This he 
called the world-line of the particle. [V, p. 295] 

Sir James Jeans (1877- ) is a firm believer in relativity. Space- 
time is a unity, for him, in which space and time are not entirely 
separable. This is true since motion through space takes time. Motion 
cannot be described in terms of a three-dimensional space alone; a 
fourth dimension must be added. In this space-time unity of four 
dimensions, it is not possible to determine uniquely which axis is 
time-like and which three are space-like. The unity is different from 
its components. Modern physical theory suggests, without being able 
to prove, that physical space and physical time do not have separate 
existences. They seem more likely to be abstractions from something 
more complex-a blend of both. [VI, p. 63] 

Albert Einstein (1879- ) has, in general, left to philosophers and 
psychologists the answering of the question of how we perceive space 
and time. He asserts that space and time have real physical significance, 
and are not merely fictitious. [II, p. 31] It seems that the experiences 
of individuals are arranged in a series of events; in this series single 
events which are remembered appear to be ordered according to the 
criterion of earlier and later, which cannot be analyzed further. There 
exists, then, for each individual, subjective time which is not in 
itself measurable. By use of speech different individuals can, to some 
extent, compare these experiences. In this way we find that some sense 
experiences of different individuals correspond to a certain extent, 
while some have no such correspondence. We regard as real those per- 
ceptions which are common to more than one individual, and which, as 
a consequence, are more or less impersonal. The conception of physical 
bodies, especially rigid ones, is a relatively constant complex of such 
perceptions. The only justification we have for our system of concepts 
is that they serve to represent the complex of our experiences; they 
have no legitimacy other than this. It is essential in our judgements 
and concepts of space to be well aware of the relation of experience 
to our concepts. For a concept of space, we seem to need the following. 
New bodies can be formed by bringing bodies B, C, ... up to body A; 
body A is said to be continued. Body A may be continued in such a way 
that it comes in contact with any other body X. The ensemble of all 
continuations of body A is designated as the space of body A. Then it 
follows that all bodies are in the space of body A (which was arbitra- 
rily chosen). Hence, space in the abstract may not be spoken of, but 
only the space of body A. [II, pp. 2-3] 

Sir Arthur Eddington (1882- ) has written extensively for both 
popular and technical consumpt on.Of space he has said that there is 
nothing in our primitive sense experiences which can be designated 
as spatial, but rather that spatiality seems to be an order of the 
material objects sensed. The concept of material object is logically 
primary to any concept of space. Material bodies themselves exist only 
in so far as they are thought. [III, p. 105] Space and time in the 
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physical world seem to have a togetherness, and neither has an individual 
existence in the physical world. There is a difference, though, in our 
apprehension of time-extension and space-extension. All our knowledge 
of space relations is indirect. It is a matter of inference and inter- 
pretation of sense impressions. We have a similar indirect knowledge 
of time relations, but we also have direct knowledge of them through 
mentally feeling time. This he calls tirre of conciousness. This feeling 
of time is one of the respects in which time differs from space. This 
time of conciousness may be extended to subjective physical time in the 
following manner. Sense experiences form a time series inlicated by 
earlier and later. These series can be repeated by the memory, and 
they can be repeated witlh some elements replaced by others by an act 
of the mind. In this way the timre concept is formed as a frame in which 
experiences may be filled in in various ways. The only reason this can- 
not become objective is that corresponding series of external events 
do not appear the same to all individuals. [III, p. 1071 Eddington 
has excited argument over his explanation of how the individual knows 
that the time of conciousness or time series is uni-directional. He 
claims that the conciousness can grasp this singleness of direction, 
but that there is a criterion in the physical world, inlependent of 
conciousness, and hence objectively real, establishing this unique 
direction, and this is the increase in entropy. [I, p. 4801 

Thus we have traced the evolution of the philosophy of space and time. 
No one other single discovery played as important a role in the latest 
phases of the evolution as did the development of non-Euclidean geometry. 
That this evolution is surely not yet complete is a view held by many, 
including Dr. Einstein, whose view is given by his biographer, Philipp 
Frank: "among the theories there will some day be one which in its 
logical simplicity as well as its simple representation of observation 
will be so greatly superior to all rival theories that everyone will 
recognize it as the best in every respect. " [IV, p. 2831 Those who 
developed non-Euclidean geomet'ry have opened areas of thought never 
before conceived, and it seems sure that some avenue of thought tlhus 
opened may lead to even better understanding of the nature of space and 
time, a thought well expressed by Sir Edmund Whittaker: "The humblest 
research student was thrilled to feel that the novel and unprecedented 
types of geometrical form he invented might prove to be not the ar- 
bitrary and fanciful creations of a pure mathematician, but a description 
of the actual universe in which we live." [XVI, p. 411 
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 STATISTICAL QUALITY CONTROL

 John M. Howell

 Statistical Quality Control is the application of statistical methods

 to manufacturing and industrial problems. These methods, which were

 first employed less than thirty years ago, are widely used today.
 The first assembly operation was performed many thousands of years

 ago when some stone age man fitted a stone to a wooden handle by means

 of some crude rope to make the first axe. Manufacturing in ancient times

 and up until less than two centuries ago was on a custom basis. One

 could not drive in at the corner service station to get a new wheel if
 he broke one on his wagon. A new one would have to be made and fitted

 in place. One of the biggest improvements in manufacturing practice was
 made just before 1800, when Eli Whitney made some parts for guns which
 were interchangeable. It was the comrrion thing during this period for
 one man to make his own tools, make the parts, inspect them, and then

 assemble them. Today, workmen usually performi very specialized functions.
 One of these specialized functions in a manufacturing plant is Quality
 Control.

 The first use of statistical methods to improve a manufacturing

 process was in the early 1920's. This was done by Dr. Walter Shewhart
 at the Bell Telephone Company. Since that time, the use of these tech-
 niques has spread to nearly all of the large manufacturing companies

 and many of the small ones. This growth was rather slow at first, but
 due primarily to the stimulus of the last war, these methods have become
 very widely used in recent years. Several companies report savings in

 the millions due to use of quality control techniques.
 Statistics is a field whichi presents many opportunities. Quality

 Control presents splendid opportunities for young men who lhave some
 knowledge of statistics and also some knowledge of engineering or

 manufacturing processes. There are also trenmendous possibilities for
 the application of these techniques to fields other than the manufacture
 of machine parts. Quality Control has been applied to chemical processes,
 packaging of food an]i other materials. fhere is an answer for a mathe-

 mratics teacher wh1o may be asked the question, "What can I do with
 mathematics other than teach?"

 The field of Quality Control can be divided into three branches:

 process control, acceptance sampling, and research and development.
 A brief description of some 6f the methods used will be given here.

 Process control concerns a manufacturer's inspection of his own

 product in order to determine:
 1. what to do with the parts which have been made, (accept, rework,

 or reject)
 2. what to do about the manufacturing process, (change it or not).

 This control is usually accomplished by statistical tools called control

 155

This content downloaded from 144.82.108.120 on Mon, 30 May 2016 07:58:28 UTC
All use subject to http://about.jstor.org/terms



 156 MATHEMATICS MAGAZINE (Jan. -Feb.

 charts.

 If measurements are made, chiarts for averages and ranges are used.
 These measurements might be dimensions, electrical characteristics,

 or weights. A small sample, often five pieces, is inspected at approxi-

 mately regular intervals. This may includle all of the product or only
 a portion of it. The average an-d the range of the sample are computed,

 the range being the difference between the smallest and largest measure-

 ment. The value of average is plotted on one chart an<] the value of
 range on another. After about twenty such points have been plotted on
 the charts, control limits are computed. This calculation requires

 mlerely that the average values found be multiplied by some constants
 which are found in any text on the subject. These limits are placed on
 the charts as horizontal lines. To simiplify the discussion here, we
 will assume that all points for this preliminary data are within these

 control limits, or we say the process is "in control". A typical
 control chart which is in control then appears as follows:

 'A

 /2 3 'S 67~~1 i/ . ~

 S Al I-~L/)lc5 ~ iz bcI

 As the manufacturing process continues, points are plotted on the
 control chart and if the points remain within the control limits,
 this fact is taken as evidence of control. But if a point should fall
 outside of control limits, conditions at this time are noted and
 attempts made to bring the process back into control. This takes only

 a little statistical knowledge, but a large amount of practical know-

 ledge. The usual thing is to find a process "out of control" at the
 beginning, but discussion of this case is considerably more complex
 and will not be included here.

 If measurerrients are not madle on the pro.luct, but it is simply divided
 into two portions: that which is good and that whilch is not good, the
 percent defective of each sample is plotted on a chart. Limits for this
 type of chart may also be found and the results are very similar to

 that given above for the case where measurements are marde. For this
 type of chart, called a percent defective or fraction de-fective chart,
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 larger sample sizes are necessary and results are often not as positive.

 This type of chart is often used for sub-assemblies and in the in-

 spection of protective or decorative finishes where measurements are

 impossible or impracticable.

 For large assemblies, a chart known as a defects per unit chart is

 often made. This chart has the numiber of defects plotted in place of

 measurements. Further information on process control may be obtained

 from Grant, "Statistical Quality Control".

 Acceptance sampling is used in the inspection of incoming material.
 Here the purpose of inspection is to determine:

 1. what to do with the particular lot at 1-land, (accept, rework,

 or reject)

 2. what to do about the supplier, (continue to purchase from him
 or not).

 A statistical sampling plan inlicates how muclh inspection is required

 for any desired value of percent defective in the material. The first
 sampling plans were devised by Dodge and Romig of the Pell Telephone
 Company in the 1920's. A new sampling plan for the procurement of miil-

 itary material, MIL 105A, has appeared within thie last year and unifies

 procedures for the various branches of the armed services. By using
 statistical sampling plans, a manufacturer can tell if the material and
 component parts he is getting are good enough for his needs.

 Samplirng by variable, that is by using measurements instead of
 merely determining conformance, is a new field, and although some
 plans of this type are being developed, none has been released for
 general use up to the present time. Those interested in the subject
 of acceptance sampling should read, "Sampling Inspection", by Freeman,
 Friedman, Mosteller, and Wallis.

 The use of statistical techniques in research and development is
 a vast and interesting field. Here, a much broader background in math-
 ematics and statistics is necessary to cope with the problems which
 arise. The reader is referred here to Freeman, "Industrial Statistics".

 Other references on this subject can be found in those cited and in

 Butterbaughi, "A Bibliography of Quality Control", or in "Industrial
 Quality Control", wlhich is the publication of the American Society
 for Quality Cointrol.

 Los Ang"eles City College
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MATHEMATICAL CAREERS IN MILITARY RESEARCH 
John W. Od1e 

Mathematicians who can recall conditions prior to World War II are 
aware that tremendous changes have occurred in the opportunities open 
to them. Formerly, teaching was almost the sole occupation available, 
with a scarcity of openings and anemic salaries. Now the mathematician 
is in the enviable position of being able to select from a wide variety 
of well-paid jobs in government and industry, as well as in the field 
of education. The excellent work done by the Applied Mathematics Panel 
and by many scattered individual mathematicians during the war helped 
greatly to bring about a recognition of the usefulness of mathematicians 
in activities concerned with the development and usage of complicated 
equipment. This recognition did not die out after the war and, in fact, 
is still on the increase. 

In this presentation primary attention will be focused on those 
outlets for mathematical talent which are directly connected witi 
military agencies. As all taxpayers well know, the defense establishment 
in this country is heavily engaged in the support of many weapon develop- 
ment projects, in both government and industrial laboratories. Modern 
weaponeering has become a tremendously complicated business requiring the 
best possible talent in the fields of physics, chemistry, and engineer- 
ing. Because mathematics is the universal tool in these fields, anil 
because the workers in these fields are not all mathematical wizards, it 
is natural and inevitable that mathematicians should be drawn in to 
participate in the formulation and solution of problems. 

As one would naturally expect, the primary demand is for mathe- 
maticians with special training and experience in some applied field, 
although a surprising amount of pure mathematical research is sponsored 
by the Office of Naval Research and certain Air Force and AEC agencies. 
Security restrictions prevent detailed discussion of many of the inter- 
esting problems, but certainly it can give little aid or comfort to the 
enemy to know that our scientists are pursuing studies in such fields as 
aerodynamics, ballistics, fluid mechanics, circuit analysis, thermo- 
dynamics, elasticity, theoretical mechanics, optics, nucleonics, and 
other branches of mathematical physics. In addition to their participa- 
tion in such studies, mathematicians are contributing important services 
of general utility in the areas of high-speed computing and statistical 
analysi s. 

Computing, as a matter of fact, has become one of the major new fields 
in mathematics. It is, of course, the oldest branch of mathematics, but 
the accomplishments of modern electronics have excited many new interests 
in treating by numerical methods problems which are analytically intract- 
able. The government is subsidizing many super-computer development pro- 
jects, and almost every laboratory has plans, or at least hopes, for 

159 

This content downloaded from 128.235.251.160 on Sun, 7 Dec 2014 09:27:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


160 MATHEMATICS MAGAZINE (Jan. -Feb. 

acquiring one of the new monsters. Fortunately, there seems to be no 
danger of technological unemployment from these developments. On the 
contrary, any institution acquiring modern computing equipment always 
seems to develop a voracious appetite for more mathematicians, because 
the machinery has not yet acquired independent volition and someone has 
to tell it in precise detail just what to do. Modern computing is an 
excellent field to recommend to budding young candidates for a career 
in mathematics because it offers opportunities for people with a very 
wide range of training - from a taste of undergraduate mathematics to the 
Ph.D. level - and the market should be an expanding one for a long time 
to come. 

A new field for mathematicians, and other scientifically trained 
people, which opened up during the past war is that of operations re- 
search. The armed services found that the efficiency of operations 
could sometimes be dramatically improved by relatively simple changes in 
procedure recommended by scientific observers, and a whole new service 
was born to supply such observers. Thle Navy now has an Operations Eval- 
uation Group, the Army an Operations Research Office, and the Air Force 
an Operations Analysis Section. These groups, despite the minor varia- 
tions in name, all have essentially the same purpose, namely, to subject 
military doctrine, tactics, and weapon planning to critical scientific 
scrutiny and suggest improvements to various command levels. The tech- 
niques of statistics and probability are the chief mathematical tools for 
such work, For mathematicians with a high sense of adventure, military 
operations research offers an exciting and rewarding career. As a bit 
of advice gleaned fromi personal experience, it might be mentioned that 
this work is particularly suitable for single men because it usually 
involves a considerable amount of travel about the world. Wives tend 
toward a jaundiced view of this feature of the work. The field is not 
generally open to womfen because of the complications of arranging living 
accommodations when with the armed forces away from home. 

As an indication of the extent to which mathematicians are being used 
in the defense establishment, the writer recently jotted down for his 
own use a casual list of the military offices and laboratories which he 
knew by personal experience hired high level mathematicians, and with no 
difficulty ran the number up beyond thirty. This was by no means a com- 
plete list, and it' did not include the many university and industrial 
groups doing military research and development work on contracts. 

For a mathematics student considering an eventual career in military 
research and development there are two sound recommendations. One is 
to get the maximum amount of education, up to and including the Ph.D. 
degree, if possible, and the other is to develop a strong interest in 
some applied field. A minor in physics is very desirable. Mathematical 
statistics is also arn excellent field to concentrate in at this time. 
It is assumed, of course, that anyone majoring in mathematics will 
automatically get a thorough grounding in the fundamentals of analysis. 
Without such a foundation, one can become at best only a handbook 
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specialist with no capacity for advanced research. 
A point of view whiich needs to be heavily stressed in the training 

of mathematicians for non-academic careers is that problems are not 
considered solved until usable numerical solutions are obtained. The 
consumer is more interested in results than in the ingenuity which may 
have been required to get them. Furthermore, the readers for whom reports 
on work accomplished are intended are often not trained in the in- 
tricacies of mathematical analysis, and consequently the essential 
results must be presented with great clarity and simplicity. 

Civilian employees of the military services come under the provisions 
of the Federal Civil Service regulations, with all of the advantages 
and disadvantages which Congress has chosen to impose. Actual working 
conditions vary widely, of course, from one laboratory or office to 
another, but there are certain constants throughout the system. For 
examrple, annual leave for vacations is granted according to a definite 
formula: Thirteen working days per year for employees with less than 
three years federal service, civilian and rmilitary; twenty working days 
for employees with three to fifteen years service; and twenty-six working 
days for employees with more than fifteen years service. In addition, 
thirteen working days of sick leave are allowed per year. These leave 
credits may be accumulated from year to year subject to a maximum limit 
of sixty days annual leave time and with no limit on sick leave. Pay 
scales are supposed to be vniform also, with salaries determined accord- 
ing: to an objective system for rating the difficulty and importance of 
each position. Eighteen different levels are recognized under the pre- 
sent government schedule for per annum employees, labelled GS-1 to GS-18. 
Each level has a basic salary and a schedule of within-grade increases. 

To give some concrete examples, the GS-5 level, which is the normal 
entering grade for a fresh college graduate with no other experience, 
has a starting salary of $3410, with annual increases of $125 up to a 
maximum of $4160. A Mlaster's degree qualifies a candidate for a grale 
of GS-7, with a starting salary of $4205 and annual increases of $125 
up to a nmaxirrium of $4955. A Ph.D. degree now is sufficient qualification 
for a GS-li position, with an entering salary of $5940 and a $200 
increase each 18 months up to a maximum of $6940. Promotions beyond 
these levels are dependent upon inlividual initiative and the availabil- 
ity of openings. Base salaries at the higher levels are as follows: 
GS-12, %7040; GS-13, $8360; GS-14, $9600; GS-15, 910,800. Appointments 
to grades GS-16 to GS-18, salaries $12,000 to $14,800, require special 
approval and are limited in number by statute. 

Civil Service employees also enjoy an excellent retirenment system 
and good job security. The latter item is determined chiefly by Con- 
gressional appropriations. Anyone is free to make his own predictions, 
but it appears highly probable that the military services will continue 
to receive strong support for a long time to come. Furthermore, scientif- 
ic staffs are among the last to be let go at times of cutting back. 
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'With regard-I to the less tangible but nevertheless vitally imlportant 
factor of job satisfaction, this obviously depends on the individlual 
andl on the particular local environment he finds himself in. One can 
find both good and bad situations in government service, just as in any 
otlher field of employment. On the whole, the opportunities for doing 
satisfying, high-level scientific work are now as good in military 
laboratories as in any other area with which the writer is familiar. 

On the debit side of the ledger one can cite a reasonably impressive 
list of disadvantages also. One is the ever-present red tape which is 
the source of many jokes and much frustration. Hlowever, red tape is 
apparently no longer a government monopoly, because one hears j ust about 
as rrmuch complaining on this score from academicians as from civil ser- 
vants. Actually, red tape seems to be an inevitable accompaniment of 
bigness in any enterprise, whether public or private. Examples of 
problems which bigness creates are: delays in getting decisions made, 
communication difficulties in dealing with unknown bosses far away, 
submergence of the individual and a lessening of his feeling of effec- 
tiveness, necessity for voluminous progress reports, and difficulties 
in getting new projects underway. Of course, in fairness it should be 
pointed out that bigness also makes possible the expenditure of large 
sumis and the undertaking of large-scale projects impossible in a small 
organization. 

A further disadvantage connected with doing technical and scientific 
work for miilitary agencies is that much of the work is classified, and 
hence there are restrictions on publishing or disclosing accomplishments. 
This appears to be a necessary restraint which can never be eliminated. 

As in almost any choice one may make in life, one has to take the 
bitter with the sweet, and government service is no exception. Fortunate- 
ly, in the minds of enough people, the advantages seem to outweigh the 
disadvantages so that necessary jobs manage to get done. There is still 
room for further talent, however. 

U. S. Naval Ordnance Test Station 

China Lake, California 
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M ISCELLANEOUS NOTES 
Edited by 

Charles K. Bol)bins 

Articles intended for this Department should be sent to Charles K. 
Robbins, Department of Mathematics, Purdue University, Lafayette, Indiana. 

SOME NOTES ON THE LIMIT CONCEPT 

Thie intriguing relationship between the operation lealing to the 
basic geometrical interpretation of the derivative anid that which brings 
forth the function e' seem to be ignoredJ in most calculus texts. An 
understanding of this relationship not only strengthens the concept of 
limit acquired by a calculus student - but it helps to remove the 
mystery associated with ex. 

Wvithout further ad,o let us recall that the elementary geometrical 
illustration of the derivative entails a single-valued continuous 
curve f(x) which is differentiable at all points in the given interval. 

A secant line may then be constructedI through a fixed point P and 
any other point, say Q, oI1 the curve. The usual procedure is to permit 
the point Q to approach the point P alonig f(x). As Q approaches P, tlie 
slope of the secant line approaches the slope of the tangent line at the 
point P. Thie limit of the slope of the secant line IS identical with 
the slope of the tangent. In this operation the curve f(x) is held 
stationary while the straight line through P is rotated. It will be 
shown that the exact opposite is true with the function ex, i.e. the 
straight line is held constant and the curve f(x) rotated! 

Consider the points of intersection between the line (a) y = x + 1 
and a curve of the form (b) y = ax. It is evident that thie curves will 
meet at x = 0, independent of the value of "a". Call this the fixed 
point P. Now to find the other junction, eliminate y between equation 
(a) and (b). Thus ax = (x + 1) or 

Eq. (c) a = (x + 1) l/x 

Equation (c) represents the value of "a" for a given x such that 
(a) and (b) will ineet at a point, say point Q. If we let Q approach 
the point P along the straight line (a), the curve f(x) = ax will 
experience a rotation about P. The limiting position of this rotation, 
as in the previous case, is unique in that it will touch the straight 
line at only one poiit. Thie value of "a" in the limit is 'e". that is: 

lini a = lim (1 + x)l/x = e 
x-O x-O 

and the curve of form (b) becomes y = ex. 

163 
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Figure (1) is the typical illustration of the derivative for y =x2 
while figure (2) represents the foregoing process. 

.rz~~~~~~~~ye X y=x+1 
y e 1 

K 

P~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

x _ _ _ _ x 
Figur'e j* Figur'e 2. 

The above examples illustrate the most important characteristic of 
every actual ((as opposed to a relative lim)) limit process. That is, 
a limit must always be outside the domain of that which it limits. For 
instance, no member of the subclass secant, in the first example, may be 
called a limit, for another can always be found whose slope exceedis the 
one mentioned. 

A simple illustration of this is found in the class of polygons 
inscribed in a circle. As the number of sides of the polygons become 
as large as we desire, the area of the polygon approaches the area of 
the circle. However, none ofithe elements (polygons) of the given 
sub-class may be called an actual limit, for if it were, another polygon 
could be found whose sides are two, three, etc. times as nurrierous as the 
sides of the given one; and consequently, the area of the larger polygon 
would more closely approximate the area of the circle. Ihe areas of the 
polygons are forever seeking but never attaining the area of the circle, 
which is obviously the limit. 

It is interesting to note that a whole field of mathematics arose 
by predicating the property of one subclass with that of another under 
the same genus. Consider the genus Magnitudle, if the property of Point 
is predicated of the subclass Line, then a"quantity" is produced which 
is so small that it can't get any smaller. Ihis is the so called infin- 
itesimal which, thanks to Weierstrass, is being recognized by niathe- 
maticians for what it is - a useless metaphor! 

Leibniz utilized this concept when he predicated secant of the 
tangent. He said, in effect, that a tangent touches a curve at two points 
which are infinitesimally close. Poisson1, as well as Leibniz, believed 
that infinitesimals actually existed. 

Mathematicians were not the only ones who misused interclass pred- 

1Poisson, Traite de Mecanique, Part I, second edition, p. 14. Paris, 1833. 
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ication. The world is fully cognizant of the opportune employment of 
these infinitely small quantities by flegel in his philosophical doc- 
trines. The same error is repeated by anthropologists when they pred- 
icate brute of man and thereby produce the fictitious missing link" 
which has, of necessity, the same kind of reality as the infinitesimal. 
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CURRENT PAPERS AND BOOKS 
Edited by 

H. V. Craig 

This department will present comments on papers previously published in the 
MATHEMATICS MAGAZINE, lists of new books, and book reviews. 

In order that errors may be corrected, results extended, and interesting 
aspects further illuminated, comments on published papers in all (departments 
are invited. 

Communications intended for this department should be sent in duplicate to 
H. V. Craig, Department of Applied Mathematics, University of Texas, Austin 
12, Texas. 

Tables to Facilitate Sequential t-Tests, by Kenneth J. Arnold, 
National Bureau of Standards Applied Mlathematics Series 7, xix, 82 pages, 
45 cents (order fromrC Government Printing Office, Washington 25, D).C.). 

This -82-page booklet will be of interest and value especially to 
statisticians and research workers in the physical and biological 
sciences, in engineering, and in industrial quality control. It will 
enable them to answer economically the commonly occurring question 
whether or not a certain specified value is the mrean of a normal popula- 
tion with unknown dispersion. 

Sequential analysis is a newly leveloped tool of statistical sampling. 
Instead of taking a sample of fixed size, the investigator uses size 
dictated by the outcome of the observations. This usually allows a 
smaller sample than those under previous methods in commrron use. The 
tIables will make it possible to apply the efficient methods of sequiential 
to the testing of hypotheses regarding the mean of a normal population. 

In the application of this new tool, each type of test requires 
special tables to determine whether or not the accumulated evidence 
from the observations at each stage calls; for adlitional data or 
justifies one decision or another. Using the present tables, the 
investigator decides the possibility of the mean being a certain given 
number in the important type of tests in which a normal universe witli 
unknown rnean andl lispersion is given. Thlie appearance of these tables 
should considerably further the many practical applications of sequential 
analysis. 

General Homogeneous Coordinates in Space of Three Dimensions. 
by E. A. NMaxwell. Cambridge University Press, New York, 1951. $2.75. 

This text deals primarily with classical elementary analytic pro- 
jective geometry of three dimensions, with especial emphasis on the 
properties of quadric surfaces, the elements of line geomrietry, and the 
elementary properties of twisted cubic curves. No use is niade of niatric 
notatioil, though an inlication of its value is given in the final 
chapter. 
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The book is a sequel to the author's work on two-dimensional pro- 
jective geometry, and references are maade to this work. Some knowledge 
of this subject is necessary for an understanding of the text under 
consideration. 

The work is tersely written, which would make it difficult reading 
for the average American student. There are no suggestive illustrations, 
few illustrative examples, and few simple exercises. However, many of 
the exercises deal with interesting properties of curves and surfaces, 
and some contain theory essential to the understanding of the subject. 

It should be notel that this type of geometry is not at present 
popular in this country. However, this book should prove to be of valuie 
as supplementary reading for those interested in this subject. 

FP. C. Sanger 
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PROBLEMS AND QUESTIONS 
Edited by 

C. W. Trigg, Los Angeles City College 

Readers of this department are invited to submit for solution problems 
believed to be new and subject-matter questions that may arise in study, in 
research, or in extra-academic situations. Proposals should be accompanied 
by solutions, when available, and by such information as will assist the 
editor. Crdinarily, problems in well-known textbooks should not be submitted. 

Solutions should be submitted on separate, signed sheets. Figures should 
be drawn in India ink and twice the size desired for reproduction. Readers 
are invited to offer heuristic discussions in addition to formal solutions. 

Send all communications for this department to C. W. Trigg, Los Angeles 
City College, 855 N. Vermont Ave., Los Angeles 29, California. 

PROPO SALS 

119. Proposed by P. A. Piza, San Juan, Puerto Rico. 

Solve t t t2 468t 3 
+ 468 for x and y. t a(a + 1)/2. 

120. Proposed by Victor Thebctu lt, Tennie, Sarthe, France. 

On the sides CB and CD of rectangle AB CD construct internally 
(or externally) equilateral triangles CEB and DFC. Show that triangle 
AEF is equilateral. 

121. Proposed by Norman Ann ing, University of Michigan. 

Solve in positive integers, (x + iy)3 = x + (a pure imaginary). 
For instaince, (7 + 4i)3 7 + 524i. 

122. Proposed by P. D. Thomas, U. S. Coast and Geodetic Survey, 
Washington, D.C. 

Show that the envelope of a circle, the square of whose tangent froml 
the origin is equal to the ratio of the abscissa to the ordinate of 
its center, the center lying on the parabola x = ay, is a circular 
cubic, one of whose asymptotes is parallel to the y-axis. 

123. Proposed by Joseph Barnett, Jr., Clarksburg, W. Va. 
Theorem: A necessary and sufficient condition that.a perpendicular 

from the vertex of a spherical triangle to the circle contairning the 
opposite side fall on that side is that the angles adjacent to that 
side be of the sanme species. 

124. Proposed by Leo Moser, University of Alberta, Canada. 

Prove that if p and q are integers not exceeding the integer n, 
then it is possible to arrange n or fewer unit resistances to give a 
combined resistance of p/q. 
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125. Proposed by it'lliam Leong, University of California at Berke- 
ley. 

2 
Consider the sequence of numbers {aif where 3a- 1, 7a2 = al 

2' 4 2 1 (aa aa) 23a = 3 
la3 2a a 15a a 2 + 2a a 19a 2(a a + a2a ), 23a a 2 

+ 2(ala5 + a2a4), so. Let 4 = lim an/an+i. Then show that (a) the 

nuniber 4 exists, and (b) A satisfies the equation 

OD 1_i4 4k 
E _ . . ,k,k= 0. 

k=1 3*4'7*8*'' (4k - 5)(4k - 4)(4k - 1)4k 

SOLUTIONS 

Erratum 

89. In the solution of this problem which appeared on page 109 of the 
November-December 1951 issue the 23rd line ends with "The desired 
equations are then ..." This should have been followed in the printel 
solution by 

" ti.Y = mix + b. and ut: y = mix + cj where" 

A Condition for a2 + b2 + C2 = 6R2 

83. [November 1950] Proposed by Victor Thetbault, Tennie, Sarthe, 
France. 

If the Lemoine point of a triangle ABC lies on the circumcircle 
of the tangential triangle of ABC we have a2 + b2 + c2 6 R2, where 
a, b, c are the sides and R is the circumradius of AB C. 

/~~~~~~~~~ 

0 

Solution by P. D. Thomas, U. S. Coast and Geodetic Survey, Washington, 
D.C. It is clear that the circumcircle of AB C cannot be the incircle 
of the tangential triangle, but mnust be an excircle if the Lemoine 
point, K, of ABC is to lie on the circumcircle of the tangential 
triangle. 

Referring to the figure we have 
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where O,R and O',R' are the circumcenters and circumradii respectively 
of ABC and its tangential triangle A'B'C' . 

With respect to the inscribed quadrilateral A'B'KC' we have 

Bj2 = a2 = 0'B2 + O'C2 _ 2R'2 (2) 

Again from the figure, using the median theorem in triangle O'BC, 
we have 

2 0'S2 = 0'72 + OQC2 _la2( 

Considering the triangle O'A'O we find by Stewart's theorem 

0S 2 = R'2 + a2(O02 - R 2)/4R2 - a2/4. (4) 

From (2) and (3) we have O'S2 = R'2 + a2/4 and with the value of 
00-1 _ R2 from (1) we may write (4) as 

R2 + a2/4 = R2 + a 2R'/2R - a2/4, whence'R = R'. 

With this condition the relations (1) and (2) become 

3R2 o0'2 + 0'C2 = 2R2 + a2. (5) 

Now if F is the midpoint of OIO', we find in the quadrilateral O'BOC 

(O0B + O'C ) + 2R2 = O ,2 + a 4J2 (6) 

With the values from (5) placed in (6) find that FS = R/2. 
Similarly it may be shown that the distance from F to the midpoints 

of AC and AB is equal to R/2, that is F is the nine point center of 
ABC and O' is therefore the orthocenter of ABC. In view of this last 
fact we have 

,C2 + C2 -4R2 2 + b2 -4R or 

2 2 2 2 2 (O'B + 0'C ) + b+ c2 8R2 (7) 

Substituting from (5) in (7) we have the announced relation. 
The relations (1) and (2) may be found in Altshiller-Court, College 

Geometry, pages 109, 114. Relations (3), (4), (6) and (7) appear in 
R. A. Johnson, Modern Geometry, pages 68, 163, 191. 

Also solved by L. M. Kelly, Michigan State College. 
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Volume of Solid formed by Folding 

95. [March 1951] Proposed by A. 0. Qualley, Farnhamville Independent 
School, Iowa. 

Each side of a square sheet of paper ABCD equals 2a. The midpoints 
of AB, BC, CD, and DA are E, F, G, and H, respectively, and 0 is the 
center of the square. The square is creased inward along EG and FH, 
and outward along the diagonals AC and BD. E, F, G, and H are then 
drawn inward to form the base of a square pyramid 0 - EFGH, surrounded 
by four tetrahedra OAHE, OBEF, OCFG, and ODGH. (1) If each side 
of the base EFGHis a, find the volume of the whole solid. (2) Find 
the length of the side of the base EFGH for which the total volume 
is a maximum, and compute the maximum volume. 

A~~~~~~~ 

Solution by Leon Bankoff, Los Angeles, California. Let x represent 
the length of the side of the base of the square pyramid 0 - EFGH. 

Then the volume of the pyramid is (x2/3) a2 - x2/2. A plane through 
HE and P, the midpoint of AO, is perpendicular to AO and divides the 
tetrahedron OAHE into two congruent tetrahebira with isosceles tri- 
angular bases. The volume of each of these tetrahedra is (1/3)(a i/2/2) 

(x/2) a2/2 - x2/4x or (ax/12) a2 - x2/2. There are eight of these 
tetrahedra, so the volume of the whole solid is 

V = [x2/3 + 2ax/31 a2- - x2/2. (I) 

(1) Hence, when x = a, V = a3 2/2 or approximately 0.7071a3. 
(2) Obtaining dV/dx from (I), equating it to zero and simplifying, 
we have 

3x3 + 4ax2 - 4a2x - 4a3 = 0 

The one positive root of this equation is approximately 1.07170a. 
Therefore, from (I), the maximum total volumre of the whole solid is 
approximately 0.7160a3. 

Also solved by A. L. Epstein, Cambridge, Mass.; and the proposer. 
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Difference of a Cube and a Square 

98. [May 1951] Proposed by Victor Thebault, Tennie, Sarthe, France. 

Find a perfect cube and a perfect square such that their difference 
is 2,000,000. 

Solution by Leon Bankoff, Los Angeles, California. All solutions 
of the equation x2 + 2y2 = zn in relatively prime x, y and positive 
z are given by x + y M = +(p + q -)n p = p + 2q2 with p, 2q 
relatively prime and of different parity. [See, e.g., Uspensky and 
Heaslet, Elementary Number Theory, McGraw-Hill, (1939), p. 393-5.1 

If y = 1000, n = 3, then z3 -X 2,000, 000 and x + 1000 V- 
= (p + q I) 3 -(p3 + 3p2q M _ 6pq2 - 2q3 v/7i). Equating the 

real parts and the imaginary parts, we have 

x = ?(p3 - 6pq2) and 3p2q - 2q3 = ?1000, 

whereupon p v ? V/[2q2 i 1000/q]/3, where the double signs are indepen- 
dent of each other. Hlence q must be a divisor of 1000. Now 8 is the 
only permissible value of q of parity different from the corresponding p, 
namely ?1. Therefore x = ?383, z = 129 and 

1293 - 3832 = 2146689 - 146689 = 2000000. 

Also solved by George Baker, California Institute of Technology; 
H. H. Berry, University of Kentucky; Monte Dernham, San Francisco, 
California; L. A. Ringenberg, Eastern Illinois State College; and the 
proposer. 

Baker, by inspecting a table of squares and cubes also found (300)3 
- (5000)2 = 2,000,000. This result may also be obtained by taking 
p = = 10 in Bankoff's solution. That this is the only other solution 
to z - = 2,000,000 may be shown by assuming that z and x have certain 
common factors and reducing the resulting equations. The only ones 
secured are 

3 2 
zi - xi = 31250, z = 4zl , x = 8xl; 
3 2 

Z3 - x2 = 128, z = 25z2, x = 125x2; and 
3 2 z 3 _x3 = 2, z = lOOz3, X = lOOx3 

Followinlg the method of Bankoff's solution, we find xl = ?625, z1 = 75; 
X2 = ?40, z2 = 12; x3 = ?5, z3 = 3. Each of these solutions is equivalent 
to x = ?5000, z = 300. 

Area of Parallelogram Circumscribed to Ellipse 

100. [May 1951] Proposed by Wang Shik Ming, Chung Hwa High School, 
Malang, Java, Indonesia. 

The area of the parallelogram formed by the tangents to an ellipse 
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at the extremities of any pair of conjugate diameters is equal to the 
area of the rectangle contained by the axes of the ellipse. 

Solution by Charles McCracken, Jr., University of Cincinnati. Let 
C be the center of the ellipse and let PCP', DCD' be the conjugate 
diameters. The area of the parallelogram wlich touclies the ellipse 
x2/a2 + y2/b2 = 1 at P, P', D, D' is 4(CD)(CF) where CF is the per- 
pendicular from C on the tangent at P. 

Now if the eccentric angle of P is gb, the eccentric angle of D is 
?T /2. T'hen 

(CD )2 = a2cOS2(_ i 7?/2) b2sin2(V ?T/2) 

or (CD)2 = a2sin2b + b2C (1) 

The equation of the tangent at P is 

(x/a) cos cp + (y/b) sin r = 1. 

So (CF)2 = 1/[(cos xb)/a2 + ( sin i)/b2] 

or (CF)2 = a2b2/(a2sin 2cp + b2cos2$i). (2) 

Fromi (1) and (2) we see that the area of the parallelogram is equal 
to 4ab. Since the major and minror axes are conjugate diameters, the 
propositioni is proven. 

Thle above proof appears as a theorem on pages 132-133 of Chlarles 
Smith, Conic Sections (18R4). 

Also solved by George Baker, Student, California Institute of 
Technology; Leon Bankoff, Los Angeles, California; Vern Hoggatt and 
Adrian Wenner, Oregon State College. 

QUICKIES 

From time to time this department will publish problems which may be solved 
by laborious methods, but which with the proper insight may be disposed of 
with dispatch. 'Readers are urged to submit their favorite problems of this 
type, together with the elegant solution and the source, if known. 

q 51. Compute the first period of the repeating decimal equivalent 
to 1/72 . [Submitted by J. M. flowe ll.] 

Q1 52. Prove that no perfect square can be written in the scale of 
ten with just five digits which are iistinct, but congruent modulo 2. 
[Victor Thebault in the American Mathematical Monthly, 44, 248, (April 
1937).] 

q 53. Solve for z: x(x + 1) + y(y + 1) + z(z + 1) = 5/2. 

q 54. Prove that the area of a parallelogram, whose vertices lie at 
lattice points of a square lattice, is a whiole number of unit squares. 
[Submitted by Leo Moser.] 
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ANSWERS 

A 51. 1/72 = 1/49 = (0.02)/(1 - 0.02) = (0.02) + (0.02)2 + (0.02)3 + 
= 0.020408163264 

128 
256 

512 
1024 

2048 
4096 

P192 
16384 

32768 
65536 
131072 

262144 
524288 
1048576 

2097152 
4194304 

8388608 
16777216 

33554432 
67108864 
134217728 

0.022040816326530612244897959183673469387755102040 

A 52. There are but two sets of five digits, 0 2 4 6 8 and 1 3 5 7 9, 
which are distinct and congruent modulo 2. The sum of the digits of 
every perfect square must be congruent modulo 9 to 0, 1, 4 or 7. tHow- 
ever, the sum of the digits of the first set is congruent to 2 (mfod 9). 
If the last digit of a perfect square is odd, the penultimate digit 
must be even. The second set contains no even digit. Hience no permutation 
of either set can be a square numiber. 

A 53. z/(z + 1) = 5/2 - x/(x + 1) - y/(y + 1) 
= (5xy + 5x + 5y + 5 - 2xy - 2x - 2xy - 2y)/2(x + 1)(y + 1) 
= (xy + 3x + 3y + 5)/(2xy + 2x + 2y + 2). Applying division we have: 
z = (xy + 3x + 3y + 5)/(xy - x - y - 3). 

A 54. The result follows immediately from the determinant expression 
for the area of a parallelogram (or triangle) derived in elementarv 
analytic geometry texts. The value of a determinant whose elements 
are integers is of course an integer. 
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