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THE OSCULATING CONICS OF PHYSICAL
SYSTEMS OF CURVES

Edward Kasner and John DeCicco

1. Introduction. Kasner has presented the development of the oscu-
lating parabolas (four point contact) of the trajectories and the systems
S, of a positional field of force in the plane in the Princeton Collo-
quium'. In the present paper, we shall begin the study of the theory
of the osculating conic sections (five point contact) of trajectories
and general physical systems of curves.

2. Systems S,. Consider a general positional field of force defined
over a certain region of the (x, y)-plane where the force vector, acting
at any point (x, y), is assumed to be continuous and to possess contin-
uous partial derivatives of the first and second orders. Also the force
vector 1s assumed to be not identically zero. There 1is no loss in
generality in supposing that a particle moving in this field of force
1s of unit mass.

A system S, of curves in this positional field of force consists
of curves along which a constrained motion is possible so that the
pressure P is proportional to the normal component N of the force
vector. Thus P = kN where k is the constant factor (7 -1) of propor-
tionality?* )

Let 6 and r denote the inclination to the x-axis and the radius of
curvature of a curve C, and let the subscript s denote total differen-
tiation with respect .to its arc length s. Also let t denote the time,
and v the speed of a particle describing this curve C. Finally T and N
denote the tangential and normal components of the force vector along
a curve C in the given field of force.

The intrinsic differential equations of a system S, are

2
_ dv _ -
(1) %r = (k + 1)N E%" vog, = T,

2 . . .
since P = Y - N = kN. Eliminating the speed v from these equations,
r

it is found that the intrinsic differential equation of third order
representing a system S, in a positional field of force is

T N 2

(2) r.=nl _r_s, wheren =

§ n N R+ 1

The important systems S, of physical interest are
(a) The system S, of trajectories given by k = 0, or n = 2,

117
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(b) The system S, of general catenaries given by k = 1, or n = 1.

(c) The system S_, of generalized brachistochrones given by k = -2,
orn = -2,

(d) The system S, of velocity curves given by k= ®, or n = 0,

3. Certain related vectors associated with a positional field of
force. We shall consider certain vectors derived from the force vector
in order that the derivatives of higher order of (2) with respect to
the arc length be of a simpler form.

Let #(x, y) and ¢¥(x, y) denote the horizontal and vertical components
of the force vector. Then

(3) T=¢cos & +ysinf, N=-dsin b + Y cos 6.

It is observed that T and N are any two differentiable functions of
(x,y,0) which obey the two relations

(4') Ta = N, Ne = -T,

Our two new vectors are the following ones. The horizontal and
vertical components of the first vector are N, and N}, and those of the

second vector are T, and T,. Denote the tangential and normal components

of the first vector by A and B, and those of the second vector by C
and D. Then

(5) A

N, cos 0 + Nysin 6, B = -N,sin 0 + Nycos o,

C=Tcos6+Tsinf, D=-Tsin @+ Tcos 6.
x y x b

Let E denote the quantity
(6) E=A cos 9+Aysin 9=Nzxcoszﬁ+ 2Nzycos 6 sin 49+Nyysin29.
From equations (2), (4), (5), (6), we obtain
Nro = (n+ 1)T - Ar,
(7) Nrr = (n+ 1)(N* + T?) + r[n(CN - 24T) +

(2CN - 34T - BN)] + r?(24% - EN).
The following expressions are useful for later purposes.

N9+ r. 2 -3rr ) = (n~-2[(n+ 1T? - 3N?]
+ r[n(4AT - 3CN) + (7AT - 6CN + 3BN)] + r2(3EN - 54%),

(8) N(9+2r2-3rr )= (n+1)2n-1T -3(n- 2N

+ r[n(2AT - 3CN) + (5AT - 6CN + 3BN)] + r2(3EN - 4A?).
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4. The osculating conic sections of a system S, of o’ curves,
Consider a fixed lineal-element E defined by the point (x,,y ) and
the direction through this point of inclination & to the positive
x-axis. Denote by (X,Y) the new cartesian coordinates of a point where
the origin of this new coordinate system is at the point of E and the
positive X-axis is the positive direction of E. The cartesian coordinates
(X,Y) are said to be relative to the lineal-element E. The relationships
between the old coordinates (x,y) and the new coordinates (X,Y) are

(9) (x + iy) = e0(X + 1Y) + (xy + iy,),
X+ iY = [(x - x)) + ily - yo)]e_ie.

Next consider a curve x = x(s). y = y(s), where s is the arc

length and r is the radius of curvature. Let s = s, define a fixed

o = %(sy), ¥, = y(s,), and
direction & = arctan ys(so)/xs(so). The equation of the osculating

lineal-element E of the curve with point x

conic section (five-point contact)® of the curve x = x(s), y = y(s),
at the lineal-element E is

(10) 9X% - 6r XY + (9 + 2r .2 - 3rr_)Y? - 18rY = 0,
s S 8§Ss

where (X,Y) are the running coordinates of a point on the conic relative
to the lineal-element E.

The conic section (10) is an ellipse, parabola, hyperbola according
as the expression

(11) 9 + rs2 - 3rr,

o

s,

is positive, zero, negative.
If (11) is not zero, the conic section (10) is central. In this
case, 1ts center 1is

3r(rg + 3i)

9+r.2
s

(12) Z =X+ 1Y = .
- 3rr
ss

The foci of the conic section (10) are

(13) (9 + r,2 - 3rr )22 - 6r(r_ + 3i)Z - 9r% = 0.

By substituting (7) and (8) into (10), it is found that the osculating
conic sections of a system S, of o® curve in a positional field of force
are

(14) 9N2X2 - 6N[(n + 1)T - ArlXY
+ [{(n+1)@2n - 1)T% - 3(n - 2)N2} + {n(24T - 3CN)
+ (5AT - 6CN + 3BN)}r + (3EN - 44%2)r2]Y% - 18N?rY = 0.
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By (8) and (11), it is deduced that there is, in general, one
trajectory of the system S, of dynamical trajectories through a given
lineal-element E which is hyperosculated by its osculating parabola.
For k # 0, there are, in general, two curves of a system S, of curves
through a given lineal-element E which are hyperosculated by their
osculating parabolas.

The family (14) is quadratic in r and also quadratic in n.

5. The envelope of the family (14). By setting the discriminant
of the quadratic equation in r defined by (14) equal to zero, the
following result is obtained.

Theorem 1. Consider the ®' integral curves of a system S, which
pass through a given lineal-element E. The ®©' osculating conic sections
constructed to these curves at E, not only pass through E, but also
touch the conic section

(15) [6ANX + {n(24T - 3CN) + (5AT - 6CN + 3BN)}Y - 18N?]2
- 4(3EN - 4A%)[{3NX - (n + 1)TY}?
+ (n - 2){(n + 1)T?2 - 3N2}Y?] = 0,

The conic (15) is degenerate if and only if 3EN - 442 = 0, or n = 2.
The case n = 2 defines the system S of dynamical trajectories.

Theorem 2. The ®' osculating conic sections constructed at a lineal-
element E to the o' integral curves of the systenm S, of dynanmical

trajectories which pass through E, not only pass through E, but also
touch the two straight lines

(16) 2ANX + (3AT - 4CN + BN)Y - 6N?
= +2(3EN - 44%)%(NX - TY).
These two straight lines intersect in the point

6N(T + iN)

(17) Z=X+1iY = )
SAT - ACN + BN

which is on the line of force.

The two straight lines (16) may be real and distinct, or real and
coincident, or conjugate-imaginary.

In the Newtonian field of force where the force vector at any point
is directed towards a fixed point P and the magnitude is inversely
proportional to the square of the distance of the point from P, the
trajectories are conic sections with one focus at P. The point (17)
reduces to the point P and the straight lines (16) become the minimal
straight lines tangent to the conical trajectory.

The conic sections (15) are of the form

(18) ak? + 2(B.n + B)XY + (¥ n® + yn +7,)¥?
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+ 23X + 2(€0n t €)Y +n =0,

where (a,8,7,8,€,m) are independent of n.

Theorem 3. By varying k, the conic sections (15) form a quadratic
family where n is the parameter. These conics pass through two fixed
points on the line of the lineal-element E, touch a conic section, and
have their centers on another conic section.

In the first place, the points in which the conic section (18)
intersect the line of E, satisfy the equations Y = 0, aX? + 28X + 7= 0,
Since these equations are independent of n, it is seen that all the
conic sections of (18) pass through these two points.

The conics (18) touch the conic section

(19) (28,X + ¥,Y + 26 )% - 4y, (aX?® + 2B,XY
+ yzYz + 28X + 26, Y + ) = 0.

Finally the centers of the conic sections (18) are given by

(20) aX + (Byn + B)Y + 8 =0,
(Byn + BIX + (yon? + yyn + ¥,)Y + €.n + €, = 0.
Thus the centers describe the conic section
(21) Y, (aX + BY + 8)2 = B (e, + ¥, YV)(aXK + BY + &)
- B,2(aX? = y,Y? + 8X - €,Y) = 0.

6. The locus of the centers of the conic sections of the family
(14). By (7), (8) and (12), it is found that the centers of the conic
sections (14) are

(22) [(n - 2){(n + 1)T% - 3N2} + {n(4AT - 3CN)
+ (7TAT - 6CN + 3BN)}r + (3EN - 54%)+2]1Z
= 3Nr[(n + 1)T - Ar + 3iN].

Theorem 4. The centers of the o' osculating conic sections con-

structed at a lineal-element E to the ©' integral curves of the system

E%, which pass through E, describe the conic section

(23) (3EN - 542)[3NX - (n + 1)TY]?
- Aln{ 4AT - 3CN) + (7AT - 6CN + 3BN)][3NX - (n + 1)TY]Y
+ (n - 2)A%2[(n + 1)T? - 3N2]Y%2 + ON2[3NX - (n + 1)TY] = 0,

which passes through the point of E in the direction whose slope with
respect to E is equal to the slope of the force vector with respect



122 MATHEMATICS MAGAZINE (Jan.-Feb.

to E multiplied by the quantity 3/(n + 1).

The preceding result follows from equations (22) and (23)%*.

The conic section (23) is degenerate only in the cases where 4 = 0,
or n =2,

Theorem 5. The centers of the ' osculating conic sections con-
structed at a lineal-element E to the ®' integral curves of the system
S, of dynamical trajectories which pass through E, describe the straight
line

(24) (3EN - 54%2)X - (3ET - 4AC + AB)Y + 3N = 0,

This result follows from (22) by placing n = 2.

Theorem 6. By varying k, the conic sections (23) form a quadratic
family where n is the parameter. These conics pass through the point of
E and another fixed point on the line of E, touch a conic section,
and have their centers on another contic section.

The family (23) is of the form (18) where 7 = 0. The remainder of
the theorem follows from the proof of Theorem 3.

7. The locus of the foci of the conic sections of the family (14).
By (7), (8) and (13), it is found that the foci of the conic sections
(14) are given by the equation

(25) ((n - 2){(n + 1)T? - 3N?} + {n(4AT - 3CN)
+ (7TAT - 6CN + 3BN)r + (3EN - 542)r2].%
- 6Nrl((n + 1)T - Ar + 3iN1Z - ON?r2 = 0,

together with its complex conjugate equation.

To obtain the implicit equation of the locus of the foci, we proceed
in the following manner. Divide (25) by Z2. Taking the conjugate and
subtracting, the following expression

(X2 + Y2)[3NX - (n + 1)TY]

2 = = )
(26) " Y[A(XZ + Y2) - 3NX)

1s obtained. Substituting this value of r into (25) and simplifying,
the following result may be statel.
Theorem 7. The foci of the ®' osculating conic sections constructed

at a lineal-element E to the ©' integral curves of the system Sy
which pass through E, describe the algebraic curve of sixth degree

(27) (3EN - 542)(X% + Y2)2[3NX - (n + 1)TY]?
- [n(4AT - 3CN) + (7TAT - 6CN + 3BN)1Y(X? + Y?)[3NX
- (n+ 1)TY) [A(X2 + Y?) - 3NX] + (n-2)[(n+ 1)T? - 3N?]¥* [A(X? + Y?)
- 3NX]JZ + 9N (X2 + Y2)[3NX - (n+ 1)TY] [24(X2 + Y?) - 3NX~- (n+ 1)TY] = 0.
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This locus has double points at the circular points I and J at infinity
and a singular point of fourth order at the point of E.

The case n = 2 is of particular interest as it gives the system S,
of dynamical trajectories.

Theorem 8. The foci of the o' osculating conic sections constructed

at a lineal-element E to the ®' dynamical trajectories, which pass
through E, describe the algebraic curve of third degree

(28) (3EN - 542)(X? + Y2)(NX - TY)
- (5AT - 6CN + BN)Y[A(X? + Y?) - 3NX]
+ 3N2[24(X% + Y2?) - 3NX - 3TY] = 0.

This locus has two minimal asymptotes and it passes through the point
of E in the direction which is the symmetrical image of that of the
force vector with respect to the line of E,

The necessary and sufficient conditions that the cubic curve (28)
be degenerate, are

(29) 6ENT - 5A%T - 6ACN + ABN = 0,
T2(3EN - 4A%) + A%N2 = 0,
In this event, the cubic curve (28) consists of the straight line
(30) , NX + TY = 0,
and the null circle of center

3NT(T + iN)
31 X+ iY = —————.
(31) i AT+ W)

The conditions (29) are realized by a Newtonian field of force.
The point (31) is the center P of this particular field of force.
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COSETS IN A SEMI-GROUP

Milo W. Weaver

INTRODUCTION. If two integers a and b have the property, a - b
is divisible by the integer m, a is said to be congruent to b modulo
m. This is written a = b (mod m). The equality of ordinary algebra
shares many of its properties with the congruence relation. In this
paper, we shall suppose that the reader is familiar with this relation
as discussed in the books on elementary number theory. The congruence
characteristics of the integers which are prime to the modulus are
well known. These integers will be called units in this study. One of
the main objectives of this article i1s to present some of the properties
of the integers which are not prime to the modulus.' Since no two of
the integers 0, 1, ..., m - 1 are congruent modulo m, and since every
integer is congruent to one of them, they are called the least residues
modulo m. The formula ¢ = km + r, 0 < r < m, gives us a method of
finding the least residue of an integer i modulo m. We shall now give
some examples illustrating the behavior of certain integers not prime
to a composite modulus. When 30 is raised to successive powers, we
obtain the set of incongruent integers modulo 360: 30, 180, 0. Similarly
12 generates the least residues: 12, 144, 288, 216, 72 modulo 360.
This set contains the set: 144, 288, 216, 72, which has the properties
modulo 360: each one divides the others modulo 360; a* 216 = a (mod 360)
for each a of the subset; and 288 generates the subset. 5 generates a
set of least residues modulo 360, which has the property: each divides
the others modulo 360. The least residues of the units modulo 12 are:
1, 5, 7, 11. If the elements in this set are multiplied successively by
1, 2, 3, 4, 6, and 0, we get the sets of least residues modulo 12:
1,5, 7, 11; 2, 10; 3, 9; 4, 8; 6; and (. Furthermore these sets are
disjoint and they exhaust the total set of least residues modulo 12.
These examples are special cases of theorems 1, 3, and 4. Cosets in
semi-groups are mentioned in theorem 1; we shall develop a theory of
these cosets which is similar to the theory of cosets in groups. It
is astounding that theorems 3, 4, and 6 concerning the properties of
the residues modulo m are not well known; however the writer has not
been able to find published proofs of these theorems. If any previous
work is duplicated, then that part of the present paper can be regarded
as expository.

PART 1

COSETS IN SEMI GROUPS. Let S be a set of elements denoted by small
letters, ° be an operation symbol which can be placed between any two

"This problem as well as the problem of the generalization of the theory
of cosets was suggested to the writer by H. S. Vandiver.

125
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elements of S, and = be a relation called equal with the properties:

l. a = a for each element a of S.

2, Ifa=1b, then b = a.

3. Ifa=2"5and b =c, then a = c.

4. In an operational equation a°b°c®...°r = t°u°v°...%, any com-
bination of elements can be replaced by its equal combination.

The symbol ° is often omitted between two elements. If S also has the
properties:

5. ab = x is always solvable in S,
6. (ab)c = a(bc) for each a, b, and ¢ of S,

then S is called a semi-group. If furthermore:
7. ax = b and ya = b have solutions for each a and b of S,

then S is called a group.

Let S be a semi-group with a subsemi-group S'. If a; is an element
in S, then the right spread of a; (written hereafter as si) with respect
to (w.r.t.) S’ is the number of elements x (which set of x’s we call
S") in S’ such that a;x = a;. This set is a semi-group, for a;x;x, =
a,%, = a; for each two x’s of S". If S' is a finite group G, then the
set S is a group, for it is a finite closed subset of a group. S" can
be proved to be a group even though G is infinite. S" is said to be
the right semi-group in S w.r.t. S', belonging to a,. The word “left”
can be substituted for “right” throughout the discussion. If a commutes
with all the elements of S', we omit the word ‘‘right”. These two
comments apply to all future discussions of this nature. If S’ is a
group, it can be divided into cosets w.r.t. S". If S is a finite semi-
group containing a subsemi-group S', and c; is an element in S, by the
left coset ciS', we mean the set of elements obtained by multiplying
c; on the right by each element of S'. If S’ is a finite group G of
order n and s; is the right spread of ¢, in Sw.r.t. G, let n = s t,.
Then t; is an integer, for it is merely the index in G of the right
subsemi-group in S w.r.t. G, belonging to c;. If S is divisible uniquely
into mutually exclusive left cosets w.r.t. a subsemi-group (group) S',
then S’ is called a left divisor semi-group (group) of S. The last
example of the introduction illustrates this definition. We emphasize
the uniqueness of the cosets, regardless of which elements we choose
as coset multipliers. It follows from the definition that each element
of S is divisible on the right by some element of S'.

A. A. Albert? and R. H. Bruck® discussed disjoint sets called cosets
in a system called a quasi-group. However a quasi-group is non-associa-

2Quasi-groups I, Trans. Am. Math. Soc., Vol. 54 (1943), pp. 507-519.

3Contributions to the theory of loops, Trans. Amer. Math. Soc., Vol. 60
(1946), pp. 245-354.
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tive and lacks only this property to make it a group.

A. R. Richardson® discussed cosets in a groupoid G. A groupoid is
a system which is closed under a single valued binary operation.
Associativity is not postulated. Richardson’s definition of cosets of
G w.r.t. a subset is like ours except that he permitted the presence
in G of elements not divisible by any elements of G. If G is divided
into cosets w.r.t. a subgroupoid B and the product of two right cosets
is a right coset, then the quotient groupoid G/B is said to exist. Let
U be the set of elements which observe the associative law, from any
position, w.r.t. all the elements of G and let C be those elements of
the center that are in U. Richardson proved that the quotient groupoid
G/C exists.

F. W. Levi® discussed cosets in what he called R-semi-groups, but his
definition of cosets is different from ours.

R. R. Stoll® proved a theorem about the division of a finite simple
semi-group into cosets w.r.t. a subright-group. He used coset in the
same sense that we do, but his finite simple semigroup cannot contain
‘a zero element, while this is permissible in our theorem 1 which re-
sembles Stoll’s theorem.

THEOREM 1. A finite semi-group S with a subgroup G has G as a left
divisor group if and only if the right semi-group in S belonging to
c with respect to G is nonvacuous for each element ¢ in S. Furthermore
if S is of order g and ¢y, ¢,, ..., ¢, is a complete set of coset
multipliers of the left cosets of S with respect to G of order n, then

h 7
2 n/s; = g, where s; is the right spread of c¢; . The “if” part of

L=

this theorem is a generalization of one due to Dr. H..S. Vandlvers.
The hypothesis of his theorem is, If the identity element of G is a
right identity of S.

To prove theorem 1, first we suppose that S is a finite semi-group
with a subgroup G, and furthermore, if ¢ is any element whatsoever
in S, then the right semi-group in S belonging to ¢ w.r.t. G is non-
vacuous. We denote the identity element of G by c,. If the coset ¢,G
does not exhaust S, we let ¢, be an element not in c¢,G. Then ¢, is in
c,G since the right semi-group of ¢, in S w.r.t. G is nonvacuous.

4G’roupoids and their automorphisms, Proc. London Math. Soc., (2) 48
(1943/45) pp. 83-111.

“on semi-groups, Bull. Calcutta Math. Soc., Vol. 36 (1944), pp. 144-146.

6Representations of finite simple semi-groups, Duke Math. Jour., Vol 11,
(1944), pp. 251-265.

7J. L. Dorroh first proved the “if’” part of this theorem, but did not
publish it. The writer is not familiar with the nature of his proof.

8The elements of a theory of abstract discrete semi-groups, Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zurich, vol. 85 (1940),
pp. 71-86.
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It is clear that we can exhaust S by continuing this process. Now
Ci8k = Cj&p

if k7 m, for if the equality held, c. would be in ¢;G and ¢, in qu.
The cosets are therefore mutually exciusive.

c;8,G = ciG;

Hence the division of S into left cosets w.r.t. G is unique. Let ¢ be
any one of the c’s. We denotelby B, a complete set of multipliers of the
right cosets of G w.r.t. G;, where G; is the right semi-group in S
belonging to € W.r.t. G. Apparently each element in ¢ B; is in c;G.
The converse 1s true also, for

= ! =
c;8 T cg'b =cb,

where g' is in G; and the b’s are in B. The order of ¢;B; is the index
of Gé in G. Hence if g is the order of S, n is the order of G, s; is
the right spread of ¢; in G, and h is the number of distinct left
cosets S is divided into w.r.t. G,

h h

> t, = 2 n/s; = g.

i=y U i=

Next we suppose that the semi-group S has a subgroup G as a left divisor
group. Let the multipliers be ¢,, ¢,, ..., where c, is the identity

of G. Then ¢y is in ¢;G. Let ¢; be any one of the ¢’s; then c¢; is in
some coset. If

C; T Crép»
where g is in G, then
c, = c.g”!
k i€n
and
c, = - =
i~ Ci8n By T CiCye

We conclude that ¢; must be in ¢;G for each c;, and furthermore ¢, is
a right identity for each one of the c¢’s and therefore for S. We have
used no assumption of finiteness in this part of the proof.

If S is a semi-group such that the equation ax = b is solvable for
each a and b in S, S is .said to be a right-group. This terminology
was first used by A. Suschewitsch®. It follows, that if a semi-group

®Ueber die endlichen gruppen ohne das gesetz der eindeutigen umkehrbar-
keit, Mathematische Annalen, Vol. 99 (1928), pp. 30-50.
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is both a right-group and a left-group, it is a group.

THEOREM 2. If S is a semi-group which contains a finite left
divisor semi-group S' such that for some s of S, sS' = S', then S' is
a right-group. Since sS' = S', S’ is itself a left coset; hence by the
uniqueness part of the definition of left coset, saS' = aS' = S’ for
each a of the finite semi-group S'. Therefore the equation ax = b is
solvable for each a and b of S' and S’ is a right-group. The dual of
this theorem is proved similarly. From the truth of the theorem and its
dual and the fact that a semi-group which is both a right-group and a
left-group is a group follows the

COROLLARY. If S is a semi-group with a finite left divisor semi-
group S' which is also a right divisor semi-group and there exist
elements r and | of S such that IS' = S'r = S', then S’ is a group.

PART 2

THE CONNECTION OF COSETS WITH RESIDUE CLASSES. A set of all in-
tegers which are mutually congruent modulo m is called a residue class
modulo m. Obviously there are exactly m distinct classes modulo m.,
and each class contains exactly one integer of the set of least residues.
These classes form an additive group and a multiplicative semi-group
modulo m. Since the substitution law and the right and left distributive
laws are also valid, the residue classes modulo m form a ring. Throughout
the following discussion, we assume m > 1. If C is a least residue such
that each prime divisor of m divides C, we call the residue class which
is congruent to C one of the first type. If D is a least residue such
that some prime divisors of m, but not all of them divide D, we call the
residue class which is congruent to D one of the second type. These
two types, together with the units, exhaust the residue classes modulo
m. A residue class which is made up of units is called a unit also.

iy i

Let m = p11p22
be a residue clais of the first type whose least residue is A. Write
A in the form, p"pzz...p:j'l), where (D,m) = 1, k> 0. If b is the

smallest integer such that bk, > i, for each t in the range 1 2 t 27,

i ~ .. )
...pj], where the p’s are distinct primes and let r

then b is the smallest value of x such that r* = 0 (mod m) and is called
the nullifying exponent of r modulo m. Now suppose

r¥ = r? (mod m),
where b > y > z > 0, Then

r#(r¥7% - 1) 0 (mod m).

i

Therefore
rY72 =1 (mod nm,),

where m, = m/(A?, m); then either m, = 1 or m, is the product of certain
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prime divisors of m. But m; # 1, for this would imply r* = 0 (mod m),
which would make z > b. It is known that if (r,m) # 1, r* # 1 (mod m)
for any x > 0; hence m, is not a multiple of prime divisors of m and
r¥ # r? (mod m). We have proved

THEOREM 3. If b is defined as above, then b is the nullifying
exponent of a residue class r of the first type; furthermore r generates
a semi-group of order b, and the zero residue class is the first
repeated one,

Let C be the least resi%?e 3f a 3?sidue class r modulo m of the
second type such that C = p,'pz ?..pcc'D, where h, > 0, (D, m) = 1.

i, t i

Let A = p,‘pzz...pc ® m = AB, r belong to n modulo m, and finally let
b be the nullifying exponent of r modulo A. Hence (B, p;p,...p,) = 1.

Also r* =1 (mod B), and r® = 0 (mod A). Therefore
r®*n = 15 (nod 4B).

If r» = r% (mod m) for b+ n>p>q>0, then r? - r? = 0 (mod m),
and

r4(rP™% - 1) = 0 (mod B).

Hence rP"7 =1 (mod B), and p - ¢ is a multiple of n.
Let

Then
" . .
ra(r " = 1) = 0 (mod p:‘p;z...psc).

k
But C " #1 (mod py), 1 £t < c, by the known theorem mentioned in
the last part of the proof of theorem 3. Therefore

rf =0 (mod A).

and

We can therefore write
p=gq*kn-=k%k, +t b+ kn;

but p < b + n. Hence k, = 0 and k; = 1, and the distinct elements of

. b+n- .
the semi-group generated by r are: r, r2, ..., PPN The residue

+
b, rb ﬂ e

- . . 1. .. 10
classes r , P27 form a cyclic group under multiplication

0p, c. Biesele, An introduction to the theory of semi-groups, Master’s
Thesis, Univ. of Texas, (1933), p. 9.
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THEOREM 4. If r is a residue class of the second type, it generates
a semi-group modulo m of order b + n - 1, which contains as a subgroup
the residue classes:

T‘b, rb+1, e, rb+n—1’
where b and n are defined in the proof above.

Semi-groups of the type mentioned in theorems 3 and 4 are called
cyclic. Their importance in general systems has been discussed''.

Type two contains as an interesting sub-type 2a, the set of residue
classes whose least positive residues contain as divisors the highest
powers of certain prime divisors of m, but are prime to other prime
divisors of m. Concerning this type, we have as a corollary to theorem
4, the

CCROLLARY. If r is a residue class of type 2a, it generates a
cyclic group of order n, where n is defined in the proof of theorem 2.
This follows from the proof of the theorem, where b = 1.

If we denote the group of units modulo m by G, then by theorem 1
and 1ts dual, G is both a left and right divisor group ofhthe seml-
group S of all the residue classes modulo m. Furthermore, igl t, = m
We shall obtain two methods for getting the t’s and the s’s connected
with the coset multipliers. Let a, be any element of S and x be any

1
element of G. such that

a;x = a;(mod m).
then

x =1 (mod m/(a;,m)).

This gives us a way of finding s; and therefore t,,

On the other hand, if g, and g, are two elements in G such that

since t; = n/si.

a;g; = a; g, (mod m),
then
g, = g, (mod n/(a,,m),

which gives us a way of finding the distinct elements of the coset
a;G, and therefore t; and s;.

Let the semi-group S of residue classes modulo m contain S’ as a
left divisor semi-group. Then since S has an identity e such that eS’ =
S’, and since S’ is also a right divisor semi-group, S’ is a group by
the corollary to theorem 2. But by what we proved in the second part

"4, s. Vandiver, Bull. Am. Math. Soc., Vol. 40 (1934), pp. 914-920;
Am. Math. Monthly, Vol. 46, (1939), pp.. 22-26.
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of the proof of theorem 1, the identity of S’ is an identity for each
of the elements of S. Since a” = 1 (mod m) implies (a, m) = 1, the
group of units modulo m contains each subgroup of S which has 1 as
its identity. This proves

THEOREM 5. A semi-group S of residue classes modulo m contains no
left divisor semi-group not contained in the subgroup of units.

PART 3

FACTORIZATION IN THE MULTIPLICATIVE SEMI-GROUP OF RESIDUE CLASSES
#MODULO m. The elements of the ring modulo m which are not units are
called non-units. The units are denoted by g's. Their least residues
are denoted by u’s, v's, and w’'s. If G is the set of units and ¢ is a
non-unit, then the elements of the coset aG are called associates of one
another. A Prime is a non-unit residue class which contains no divisors
other than itself and its associates. Capital letters are used to
distinguish Primes from the primes of arithmetic. Evidently the product
of units is a unit and if any factor of a product is a non-unit, the
product is also. A set of elements are called Relatively Prime if no
two of them have a common non-unit divisor. H. S. Vandiver'? proved
that the distinct Primes modulo m are the elements whose least residues
are prime divisors of m, together with their associates. The Primes
modulo m are denoted by capital letters, P, Q, R, and S, while the
arithmetic primes are denoted by the small letters, p, g, r, and s.

Since the least residues modulo m represent a complete set of residue
classes, each element of the ring of residue classes modulo m can be
factored into Primes and units. Suppose two factorizations of the
non-unit n, into Primes and units are PP, ... P -g, and QQ, ... Ch’gz.
By commuting the factors if necessary and using the definition of
associates, we can write these in the forms

ay . a a by b b

(1) R'R% ... R*g, and S'S? ... 87 g
where the R’s are Belatively Prime and likewise the S’s. If each of
the R%*’s 1s an associate of an St and conversely, then x = y. And
n, is said to have a unique factorization into Primes and units.

LEMMA. If p®, for b > 0, is the largest power of the prime p
which divides m and if p is the least residue of P, then no two distinct
elements of the set P, P?, ..., P% are associates. If there are other
elements in the semi-group generated by P, they are associates of pb,
If PJ and P! are associates, where j < i < b, then

Pt = gPl (mod m),
and

12Theory of finite algebras, Transactions of the American Mathematical
Society, Vol. 13, (1912) pp. 293-304.
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PI(P'™7 - g) =0 (mod m).

Hence
g 'P*7T = 1 (mod m/(p?,m)),

and P'77 is a unit modulo M/(pj,m). But since j £ it < b it follows
that i = j, and no two distinct elements of the set P, Pz, ee., P° are
associates. To prove the second part of the theorem, we note first that
if m = pb, the set mentioned above exhausts the semi-group generated
by P. If m = pbm', m, £ 1, let u, = m, + p and p belong to n modulo m,.
Then (u,, m;) = (uy, p) = 1, and u; is the least residue of a unit
modulo m. Therefore

pb+‘ = u,pb (mod m),

and
pb*t = (u,)ip® (mod m)

for i > 1. Hence the elements of the set P2, b < 2 < b+ n ~ 1 are
all associates. We note that n divides the order of the group of units
modulo m/pb.

THEOREM 6. Each of the non-unit elements of the ring of residue
classes modulo m has a unique factorization into Primes and units.
Any two factorizations'? of a non-unit n, into Primes and units can
be written in the forms (1). Since each of the R’s and S’s is congruent
to an element of the type pv, where p is a prime divisor of m and v is
the least residue of a unit, we can write (1) as

(2) (r,v,)a‘(rzvz)az...(rxvx)a”'u4 and

b b b
1 2
(syw,) "(s,v,) ...(sywy) Yeug,
where the r’'s and s’s are prime divisors of m and the v's and w’s are
prime to m. Since the members of (2) are factorizations of n,, they
are congruent; and each r is some s and conversely. Hence x = y and
(2) may be written as

(3) (r,v,)a‘(rzvz)az...(rxvx)a”'u4 and

b b b
(rywy) "(rpwy) 2o (row) *rug.

"3The number of distinct solutions of the congruence a = x Xg...%.
(mod m) was discussed by B. Gyires, Uber die faktorisation im rest-
klassenring mod m, Publicationes Mathematicae, Vol. 1 (1949), pp. 51-55.
But Gyires did not discuss unique factorization.
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It follows from the lemma that if a; > b, > b where b is the largest

a. b.
power of r. dividing m, then (r;v,) ' is an associate of (r w;) *.
On the other hand if a; and bj are exponents such that a; < bj <b,
where r; is the largest power of r; which divides m, we can write a
congruence from the two members of (3):

g = ip
ri/E=r; (mod m),
where (rj, E) = (rj, F) = 1, Hence

b.-a. .
E = er a]F (mod m/(raf,m)),

a.
and bj = a; since i divides m/(r 7,m) for a; < b. Hence n, has a

unique factorization into Primes and units.

PART 4

SOME GENERALIZATIONS OF THEOREMS CONCERNING COSETS IN GROUPS.
A subgroup G' of a group G is said to be invariant in G if a”'G'a = G'
for each a in G. Obviously G' is invariant in G if and only if aG' = G'a
for each a in G. A subsemi-group S' of a semi-group S is said to be
invariant in S if aS' = S'a for each @ in S. If S, and S, are subsets
of S, by S;S, we mean the set of elements $;8; where s; and sj range
independently over S; and S,, respectively.

THEOREM 7. If a semi-group is divided into cosets with respect to
a left divisor group G, a necessary and sufficient condition that two
left cosets aG and bG be identical is that a = bg, where g is in G.
Suppose that a = bg, where g is in G. Then a is in bG. But @ is in aG,
since the identity of G is a right identity of the given semi-group.
Hence aG is bG, since the cosets are mutually exclusive. On the other
hand if the cosets aG and bG are identical, then since the identity
of G is a right identity for a and b also, a and b are both in bG.
Then a = bg, where g is in G. ,

The cosets of an invariant subgroup of a group form a group of
cosets. Similarly it is obvious that if a semi-group S contains an
invariant subsemi-group S' such that S'S’ = S', then all the cosets
of S’ in S form a semi-group under coset multiplication.

If a left divisor subsemi-group of a semi-group S is invariant in
S, we call it a divisor semi-group.

THEOREM 8. Let S be a semi-group which contains a divisor group
G. Then if the coset semi-group S/G is a group, S is itself a group.
Let ¢y, ¢,, ..., ¢, be a complete set of coset multipliers. G is the
identity coset of S/G; and since S/G is a group, each c;G has a unique
inverse ch such that

ciG'ch = ch°ciG = c.c.G = c.ciG = G,
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Hence cicj = & and cicy = & where g, and g, are both in G, and we
may write c;(c.g”') = e and (g’
G and therefore of S. It is known that if a semi-group has an identity
and every element has an inverse, then the semi-group is a group. Hence
since each element of S can be used as a coset multiplier, S is a group.
COROLLARY. Let S be a semi-group with a divisor group G such that
the coset semi-group S/G is a group. Then for each coset multiplier
c, of a complete set of coset multipliers ¢, c,, «.., €, there is
a unique c. and a unique c, of the ¢’s such that c;c. and c,c, are

elements of G. In fact ¢ is c,. We showed the existence of a ¢ satis-

c;)c; = e where e is the identity of

fying both the condition on ¢j and ¢, in the proof of the last theorem.
1

Suppose there is a ¢ such that

U -
€i¢; < 83
where g is in G. Then, using the notation in the proof of theorem 8,
and the fact that S is a group

— {
Cj = ng4,

where g, is in G. By theorem 7, c¢; is c;. Similarly c; has only one
left multiplier among the c¢’s such that the product is in G.

An element is said to be homogeneous'? in a semi-group S if it is
the product of two elements of S. If every element of S is homogeneous
in S, S is said to be homogeneous. It is clear that an element of a
subsemi-group S’ of S which is homogeneous in S’ is also homogeneous
in S, but the converse is not necessarily true. Obviously, if S contains
a left divisor semi-group, S is homogeneous and furthermore SS = S,
If I is a subset of a semi-group S such that SI is contained in I,
then I is called a left ideal of S. If I is both a left and right ideal
of S, it follows from the definition that I is a semi-group.

Suppose a semi-group S contains a finite homogeneous subsemi-group S’
as a left divisor semi-group. Choose any element ¢ of S' as a coset
multiplier. Then

[ ! 1
. = ¢.s'S
cJS cjs

for each c;s' of ¢;S'. Hence ch' is a right ideal of S'. Since S’
is a homogeneous left divisor semi-group of S, every element of S’ is
in a left coset with an element of S’ as a multiplier, and we can
exhaust S’ by such cosets in such a way that they are disjoint. Further-
more, since S' is a semi-group, none of these cosets contain any elements
outside of S'. We state our results as

THEOREM 9. Let a semi-group contain a finite homogeneous subsemi-

14A. R. Richardson, Groupoids and their automorphisms, Proceedings of
the London Mathematical Society, Vol. 48 (1943/45), p- 96.
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group S' as a left divisor semi-group. Then S' consists of a set of
disjoint right tdeals.

Since S' is homogeneous, S'S' = S’. If S’ is also invariant in the
given semi-group it follows from the remark before theorem 8 that
the cosets of S w.r.t. S’ form a semi-group. Therefore

ImIn = Im = In
for each pair of the coset ideals. Therefore, there is only one coset
of S’ and that is S’ itself. Consequently

slsl = SI - Slsl

for each s’ of S’ and S’ is a group. This proves the

CORCLLARY. If a semi-group contains S' as a finite homogeneous
divisor semi-group, then S' is a group.

It is known that if a group G contains a subgroup G’ such that G/G’
is a group, then G' is invariant in G. An obvious extension to semi-
groups is: if the semi-group S contains a left and right divisor group
G such that the product of two left cosets is a left coset and the
product of two right cosets is a right coset, then G is invariant in S,

University of Texas
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POWERS OF SUMS AND SUMS OF POWERS

Pedro A. Piza

Since ancient times the sums of the powers of positive integers
and the study of the properties of power sums has attracted the attention
of arithmeticians. Chapter XIV of Edouard Lucas’ Théorie des Nombres,
published in Paris in 1891, contains an excellent survey of this general
theory and its history. _

Many notable relations concerning the sums of powers are expounded
in Lucas’ book, due to a galaxy of mathematicians of all the ages
including Fibonacci, Fermat, Pascal, Newton, Bachet, Fuler, Roberval,
Abel, Jacobi, Radicke, Adams, Staudt, Clausen, Stern, Genocchi, Lacroix,
Cesaro, Stirling, Boole, and Lucas himself.

Particularly celebrated are Jacques Bernoulli’s classical formulas,

x
published in 1712 in Ars Conjectandi, wherein the values of 2 a"

a=1
are given as power functions of %, such as

Zoa® = (/D7 + (1/2)2° + (1/2)x° - (1/6)x° + (1/42).

Q

Y

a’ = (1/8)x® + (1/2)x7 + (7/12)x% - (7/24)x* + (1/12)x2.

a=1

In this paper we propose to present and to prove some fundamental
theorems on power sums, which this author considers to be new, by which
Bernoulli’'s formulas and other known attributes of the sums of powers
are easily derived, and new properties developed.

We begin by stating and demonstrating

Theorem A
The n-th power of the sum of the first x integers, i1s equal to
the arithmetical mean of the 2"”' sums of powers contained in

the summation

® n x
S s a2n+1—2b.
b=1 |2b - 1) a=1

This theorem is formulated as follows:

; { n } ‘2 2n+1-2%
z b=y (20 - U oy ¢
(1).. (2 a)* =

a=1 2n—1

137
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which formula is to be proved to constitute an identity for arbitrary
values of the integers n and x.

X
It is known that 2‘ a=x(x +1)/2 = (2% + x)/2.
a=

Hence (1) may be written in the form

® n x
2).. 242 =2 3 > a?"tmet,
(2) (x x) 2 b=1[2b _ 1} .2 a

Let n be any pusitive integer. When x = 1,

X -
z a2n+1 2b = 1

a=1

for all values of n and b. Therefore we are to prove that

s n
n_os )
(3).. 2 2b=1 [26 _ J
We have (1 + 1)" = 2 [ " ] + = [ " } = 9"
b=1 (2b - 2 b=1 (2b - 1
© n 0 n
1-1r = 2 —Z[ ]:o
( b b=1 (Qb - 2} b=1 (2b -1

Subtracting we get (3).
Suppose that (2) is true when x = z = 1, z > 2, so that

-1
(22 - 2)n = 2 ; " ZZ a?nt1-2b
b=1 |2b - 1) a=1

Add to each member of this equation the function

0
9 S n L2nt1-2b
b=1 (2b - 1

and we obtain immediately

L

® 2z
(22 + )" =2 3 [ n ] S g2nti-2b
b=t [2b - 1) a=t

which proves that (2) is also true when x = z. This completes the
demonstration of Theorem A by mathematical induction.
If for the sake of brevity the Lucas notation for arbitrary x

is used, we express formula (2) in the form of identities for the first
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few values of n, as follows:

(4).. (x2+x) /2= S
(2?2 +x)%/2= 28,
(x> +x)%/2= 35,+ S
(x2 +x)%/2= 4S,+ 4S
(2% +x)5%/2 = 58 + 108, + S
(x2+x)8/2= 6S,,+ 2085+ 65,
(x2+x)7/2= 7S 4+ 355, ,+ 218, + S
(x%+2)%/2= 8S,+ 56S,,;+ 56S,, + 8S,
(x2+2x)%/2 = 9S,# 84S,:+126S,, + 36S,,+ S,
(2% + 2)'Y2 = 108, 4+ 1208, j# 2525, + 1208, , + 10S,

and so forth.

7

Since S, = (S,)z, we are able to state the following corollary

Theorem B
The n-th power of the sum of the first x cubes, is equal to the
arithmetical mean of the 22"~' sums of powers contained in the
summation

; 2n % GAnti-2b
b=1 {92b - 1) a=! !

We formulate this theorem thus:

; 2n % ginti-2b
b=1 [2b - 1) a=1

22""

(5).. (2 @ = (3 &) -

a=1 a

There is an infinitude of such relations corollary to Theorem A.

For instance
{ 3n ] % gont1-2b
1

M8

2b - 1) a=t
23n"|

X % (a3
(% a)n - [“"

a=

+ 3a5N1"
_ b
4 ]

Theorems A and B concern sums of odd powers. We have also found
similar relations concerning the sums of even powers, which may be
stated as

Theorem C

(2x + 1) times the n-th power of the sum of the first x integers,
is equal to the arithmetical mean of the 3-2""! sums of powers contained
in the summations
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o 1Y 2 -
Sl G B o
= Ll - a=

i + 1 1 x -
l " } + {,1 } Za" '+2b, when n 1is odd.
126 - 2 2b - 1) |a=t

For n = 2r and n = 2r + 1, Theorem C is formulated respectively as
follows:

L

b

(6).. (2x + 1)(x% + x)%T =
25 |of 2 )L 7 } 5 g2rez+zb,
b=1 2b - 3 26 - a=1

(7).. (2x + 1)(x2 + x)27%! =

2; 2[2r + 1}+ [Zr + 1] % a2r+Zb.
b= “lab - 2) " lab - 1)]em

We shall prove (6) by induction with respect to x, and it wiil be
obvious that (7) can be proved in a similar manner. Let r be any integer.
When x = 1, (6) becomes

ot d ol )

oo
3.22r - g

b=1

= 422771 4 2:22771 = 27H1 4 927 2 92T(2 + 1),
Suppose that (6) is true when x = z - 1, z > 2, so that

(22 = 1)(22 = 2)27 = 22(z - 22)2T - (z - 22)%r

- {2r} L2rH 2[2r] 22y 2[”} ,2r+3 _2[2r] L2rt4y9 2'] L2r¥5 -
0 1 2 3 4
- [2r} L2r 4 {2"] L2r+t {2r] J2r+e [2"} L2r+3 _ [2"} L2rHA
0 1 2 3 4

. 4[ 2r } +2[ 2" l S gar-zezd
b=1| " |2b - 3 2b - 2] |a=1 '

Add to each member the function
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@© 2r 2r
z 4 + 2 2r~2+2l>
b=|[ [26 - 3] (2b - 2]}’ ’

and right away we get

2z(z + 2z2)%7 + (z + 22)27 = (22 + 1)(2% + 2)?T

9 2r ] + [ 2r ] % g2r-2+2b
2b - 3 2b - 2} |a=1 '

[o¢]

=92 3
b=1

which proves that (6) is true when x = z, completing the demonstration.
[To prove (7) in the same way, write its first member, when x = z - 1,
in the form (1 - 2z)(z - 22)2r*' ]
For the first few values of r, the following identities are obtained
with formulas (6) and (7):

(8).. (2x + 1)(x% + x) /2 = 38,

(2z + 1)(x? + x)2/2 = S, + 58S,

(2x + 1) (x% + 2)%/2 = 55, + 1S

(2x + 1)(x% + 2)%/2 = S, + 145, + 95,

(2x + 1)(x® + x)%/2 = 7S, + 308, + 11S,,

(2x + 1)(x? + x)8/2 = S5 + 278, + 558, + 13S,,
(2x + 1)(x2 + 2)7/2 = 9S4 + T7S,, + 91S,, + 15S,,

and so forth.

+

It is clear that we are able to solve recurrently for any S, as
a function of x, by considering the identities in (4) and in (8) as
simul taneous equations. Better still they can be solved as functions
of 2 + x = y. For instance with (4) we get

S, = (1/4)y"

38 = (1/2)y° - (1/4)y?

Sy = (1/6)y® - (1/12)y2

48, = (1/2)y* - 4[(1/6)y® - (1/12)y%]
S, = (1/8)y* - (1/6)y® + (1/12)y2.

and so forth.

Upon substituting x2 + x for ¥ we now get S; as a function of x
as follows:

S, = (1/8)(x% + 2)* - (1/6)(x2 + x)3 + (1/12)(x? + x)?

= (1/8)x% + (1/2)x7 + (7/12)x% - (7/24)x* + (1/12)x2,
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which is Bernoulli’'s formula.
In the same manner the identities in (8) may be solved as simultaneous
equations to get any S, as a function of x and of y. For instance

S, = (2x + 1)[ (1/6)y ]
5S, = (2x + 1)[ (1/2)y?
S, = (2x + 1)[(1/10)y?
7S = (2x + 1)[ (1/2)y°
Sg = (2 + 1)[(1/14)y3

and so forth.

(1/6)y]

(1/30)y]

(1/2)y% + (1/6)y]
(1/14)y2 + (1/42)y]

1

Again substituting z2 + x for y, Bernoulli’s formula is obtained:

Sy = (20 + 1) [(1/14) (22 + %)% - (1/14) (22 + 2) 2 + (1/42) (2% + x)]

(1/D)x" + (1/2)x° + (1/2)2° - (1/6)x° + (1/42)x.
Note that by making n = 2 in formula (5) we have

2 -
2(5,)2 = S, + S,

which is a relation first found by Jacobi in 1863, of which formula (5)
is a generalization. (See Lucas’ Théorie des Nombres, p. 233).
Also by squaring the formula

S, = (2x + 1)(1/6)y
we get
(8,)2 = (22 + 1)2(1/36)y% = (4y + 1)(1/36)y% = (1/9)y> + (1/36)y>.
Substituting now the values in (4)

y2 = 483, y3 = 6S. + 28

5 3!
we obtaln
(8,02 = [6Sg + 3S,1/9.
Hence
3(S8,)% = 25, + S,
which 1s again another formula given by Lucas.

By expressing (y* + y2)2/4 = (y* - y2)2/4 + (2y*)%/4 in terms of
sums of powers, a family of Pythagorean triangles can be formulated
thus:

S 2 _ _ 2 2
(28, + 25, + §;)° = (25; + 255 - §5)° + (385 + S;)°.
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THE NON-EUCLIDEAN PROJECTILE
Curtis M. Fulton

The principal object of this paper is to show that the path of a
projectile in the Hyperbolic Space is, in general, a parabola. For this
purpose it is essential to develop expressions for the acceleration
in a suitable coordinate system.

Through a fixed point 0, let there be given three directed axes,
numbered 1, 2, 3, nutually perpendicular. We define the direction angles
a, B, ¥ of a radius vector OP in the usual way. Then sinh OP cos «a,
sinh OP cos 0, sinh OP cos 7y will be the Weierstrass’ coordinates of
P and the direction cosines satisfy the relation

(1) cos?a + cos?S + cos?y =1

(2, p. 68 and 5, p. 86]. Now we introduce limiting surface coordinates
x, ¥, z as follows:

(2) e * = cosh OP - sinh OP cos «, e *y = sinh OP cos B,

e *z = sinh OP cos ¥

(Cf. 4, p. 97 and 8, p. 165]. Here x = const. represents a family of
limiting surfaces or horospheres that intersect the l-axis perpendicular-
ly at a point whose directed distance from 0 is x. The second family,
Yy = const., consists of planes perpendicular to the 12-plane and parallel
to the 3l-plane. Similarly, z = const. is a family of planes per-
pendicular to the 3l-plane and parallel to the 12-plane. We thus have
a triply orthogonal system of surfaces which intersect in limiting
curves and parallels to the l-axis respectively. The variable x measures
distances along these parallels, while e *y and e *z determine directed
distances on the respective limiting curves.

Let P(x, y, z) and P,(x,, ¥,, 2,) be any two points and consider the
directed line segment PP,. We now imagine three axes through P, tangent
to the coordinate curves and therefore mutually perpendicular. General-
izing (2) we obtain the following relations, involving the direction
cosines with respect to the new system

(3) e P17 o Cosh PP, - sinh PP, cos a,

(4) e—x‘(yI - y) sinh PP cos B,

e-x'(zI - 2) sinh PP, cos 7.

Hence, by a simple manipulation, because of (1),

143
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(5) cosh PP, = cosh(x, - x)+1/2 enx'—x[(y1"y)2+ (z, - z)?],
(6) sinh PP, cos a = sinh (x; - x)

+1/2 e”"'x[(y, - y)% + (z, - 2)2].

The equations x = x(t), y = y(t), z = z(t), where t is time, deter-
mine the motion of a particle in a curve and we shall assume, that these
functions are twice differentiable. If P and P, correspond to t and
t + Ot, respectively, we divide (5) by At? and find an expression for

PP
Agfz E_— which we denote by s. Thus,

(7) ;2 = 552 + e-'Zx(s,Z » 22),

the dots indicating differentiation with respect to t. Clearly, s will
be the magnitude of the velocity and integration will yield the arc
length s. The limiting position of PP, is found dividing (6) and (4) by
At and passing to the limit as At - 0, By this procedure we have for the
direction cosines of the tangent line, which we indicate by means of
the subscript T,

(8) $ cos ar =X, § cos BT = e %y, s cos Vp = e *z,

In order to define acceleration, we determine the point P,(x,, ¥,, Zz)
on the tangent to the curve at P so, that PP, = Ats and the direction
of PP, coincides with that of increasing values of t. Using (3) and
(4) and taking the direction cosines from (8), we see that the co-
ordinates of P, are given by

- - x) . b .
e (g = =), cosh (Ats) - ; sinh (Ats),
s
y sinh (Ats)
yz -y ’

® % cosh (Ats) — x sinh (Ats)

_ z sinh (Ats)
27 %7 ¢ cosh (Ats) — % sinh (At3)

Now, making use of these equations and, where necessary, of (7), the
existence of the following limits may be shown without difficulty:

) 2(x, - x,) ,
bin o oy e e ),

A¢?
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lim 2001 - %)

At =0 5 =y - 2xy,
t
lm 20 - %) oy
At -0 £2
Also, because of (5), the existence of
2P, P
lim 21 -gq
At 0 ¢2

will be secured and we define a to be the acceleration. Let us forego
the explicit expression for a and write the direction cosines of the
limiting position of the directed line segment P,P,. Using (6) and
(4) we have

a cosa, = X+ e ?%(y% + 22),
(9) a cosB, = ey - zxy),

o0

z - xz),

a cosy, e *(

the subscript A indicating the direction of the acceleration.

The above results may be obtained from an entirely different point
of view in Differential Geometry, postulating Lagrange’s equations
of motion [3, p. 106 and 6, p. 101]. In [4, p. 127] no clear definition
of acceleration seems to appear. If in our definition we especially
set t = s, we are led to the curvature 1 [1, p. 603]. Using (8) and
(9) we find by familiar methods R

2
_s “
acosaA-Bcosaw+scosaT,
s? .
a cosf, = 7 cosfy + s cosf,
2 .
a cosy, = %.COSyN + § cosy,

where the subscript ¥ indicates the direction of curvature, which is
normal to the tangent.

We now assume that the acceleration of gravity acts in the direction
of the x-coordinate, i.e. perpendicular to the limiting surfaces
x = constant. Its magnitude will be ge’® with a constant g, since it is
proportional to the number of lines of force piercing a square unit of a
limiting surface. A consideration of the potential energy (4, p. 131]
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would lead to the same expression. Thus we are ready to set up our
equations of motion, based on (9):

X + e 2%(y2 + 22) = ge?*,

e"*(y - 2xy) = 0,
e"*(zZ - 2xz) = 0.

It is readily seen, that on account of the last two equations, e~ 2%y and
e~2%; are equal to arbitrary constants. Hence y and z satisfy a linear
equation, which represents a plane cutting the horosphere x = 0 orthog-
onally. We may assume, without loss of generality, that this is the plane
z =0, in which x* and y are limiting curve coordinates (8, p. 165]. The
remaining differential equations are

x + e‘zsz = gezx, e'z(; - 2&&) = 0,

For a more detailed classification of the solutions we are going to have,
see [2, p. 142], [4, p. 91], and [7, p. 258]. It might also be useful to
change the resulting equations back to Weierstrass’ coordinates, using
(2). We first find e=2%y = C,, C, being an arbitrary constant. If C; = 0,
the path is a straight line; we now assume C, 7 0. If we substitute
in our first equation, we obtain by integration

2= (g - C)e?® + (,

with a second arbitrary constant C,. If g - Cﬁ =0 and C, = 0, we have
limiting curves. If g - Cf =0 and C, # 0, we find eliminating t and
integrating
Cl 2
Yy =+ ——0 e * C3 ,

2/C,

where C; is another arbitrary constant. Such an equation represents an
osculating parabola. Assuming that g - C% 7 0, integration will yield

2
c cc
(y - C3)2 = ———L—z ezx + __wl_f__i
g - C (g—Cf)"
We can distinguish between the following cases:
2 .
g - Cl > 0, C2 > 0, hyperbolic parabola, two branches,
g - C% <0, G, >0, hyperbolic parabola, one branch,
g - C? > 0, c, <0, elliptic parabola,
g - C? >0, C,-=0, equidistant curve, two branches.
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THE PERSONAL SIDE OF MATHEMATICS

This department desires especially articles showing what mathematics means
to people in various professions and historical articles showing what classic
mathematics meant to those who developed it. Material intended for this
Department should be sent to the Mathematics ilagazine, 14068 Van Nuys Blvd.,
Pacoima, California.

MATHEMATICS AND THE SPACE-TIME PROBLEM

Roger Osborn

Herein is chronicled a triumph of that often vilified creature, the
pure mathematician. This mathematician made a discovery which changed
the world’s course. One might argue that it would have been changed
anyway, but the fact remains that it was changed because of this dis-
covery. This world shaking discovery was the development of non-Fuclidean
geometry just over one hundred years ago. Much has been written about
this discovery and development in its relation to mathematics. Here,
then, is an account of its effect on space and time philosophies, the
changes in which have brought about the evolution of the theory of
relativity.

In order to see how this discovery affected the ideas of space and
time it is necessary to review the development of space and time phi-
losophies. It appears that there can be three broad divisions made into
which almost all philosophies of the nature of space and time will fall.
Some individual philosophies overlap two of these divisions. Taken
in the orcer in which they occurred historically, the divisions are:
(a) God, (b) Absolute, and (c) Relative. Early philosophers concerned
with the problem of space and time identified them with God Himself.
Later came the concept that absolute space and absolute time exist
independent of any experience of space or time and can not be experienced
in themselves. Lastly, came the relative philosophies. These in turn
can be divided roughly into three divisions which might be called
theories of (1) conceptual, (2) perceptual, and (3) physical space and
time. The first two of these are subjective, the first more so than
the second, 1f it can be said that there are degrees of subjectivity.
Conceptual space, for example, can be any space (whatever space may be)
which the individual may conceive. All mathematical spaces are con-
ceptual. Here is the first inkling of the effect that the development
of non-Euclidean geometry was to have. Perceptual space is that space
which the individual uses as a frame of reference when perceiving the
external world. Physical space is perceptual in nature, but it should
have features which are the same for all individual observers. It is
listed among the relative spaces since even it 1s relative to the
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position of the observer. Similar explanations might be given for
conceptual time, perceptual time, and physical time.

These divisions of the philosophies of space and time lead up to
modern times. During this century philosophy has taken a new turn,
occasionally suggested before. It seems in the light of modern thought
that we live in a world immersed in a space-time system rather than
in a system of space and time. The philosophy of a space-time system
is basic to the theory of relativity, and hence it could be said to
be a relative philosophy, but not in the earlier sense.

All of the above classifications of philosophies of space and time
deal with the nature of space and time. Another classification could
be set up in which philosophies would be classified according to the
manner in which they claim the ideas of space and time are derived.
Some claim these ideas are innate. This type of philosophy is no longer
held in high esteem. Others- claim these ideas are given a priori, but
are not inborn - they come simultaneous with the first experiences.
Still others claim they are abstractions from the ideas obtained from
sense-experience. Finally, there are those philosophies which claim
that the ideas of space and time are abstractions from a more complex
system which i1s presented to the mind in some manner. All philosophies,
except those claiming the ideas of space and time are given innately
or a priori, include some feature which implies that the mind itself
must supply some motive force in obtaining these ideas. (This may be
noticed in the philosophy of Sir Arthur Eddington mentioned later in
the paper). In this sense, at least, all of these philosophies of
space and time or of space-time are subjective.

Still another division of types of philosophies of space and time
can be had by considering the composition of space and time. Some
philosophies consider them as being composed of an infinite number of
infinitesimally small points (from which extension is derived) and
instants (from which time is derived). Others take the whole of space
and time to be given and obtain parts of this whole only by abstraction.
Still others take a middle position, claiming that the basic elements
of space and time are chunks of extension and duration. All divisions
of these chunks of durations are abstractions, and the totality of
space and time, whether finite or infinite, is obtained by the accretion
of these appreciable chunks or durations.

An insight may be had into the great change in space-time philosophies
if there is an understanding of the philosophies which preceded and
followed the discovery of non-Euclidean geometry. This may be ac-
complished by reviewing the philosophies of various individuals. The
following paragraphs will be devoted to a group of fairly brief sum-
maries of some of the views of various philosophers and physical
scientists on the subjects of space and time, their meanings, and the
means by which we apprehend or perceive them. These philosophies can
be classified generally in one or more of the ways given above. No
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claim is made for completeness in the summary of any one person’s views,
nor is it claimed that a valid cross section of all writers has been
made. Some authors spend more time and energy in explaining their
views of space than of time and vice versa. Included in the summaries
are impressions of this writer as well as those of other commentators.
It is not the purpose of this section to give arguments for or against
any of the views here summarized.

The first modern to discuss the nature of space and time was Nicholas
de Cusa (1401-1464)., He held that they are products of the mind and
hence are inferior in reality to the mind creating them. [v1, p. 59] !
Isaac Barrow (1630-1677) was Sir Isaac Newton’s teacher. For him space
is a limitless immovable substratum of the universe and time is a
capacity or possibility of permanent existence. [XII. p. 50] His was
the first clear exposition of the doctrine of absolute space and time.

Sir Isaac Newton (1642-1727) fostered the belief that space and time
are, by the will of God, existent in and by themselves, independent
alike of the mind which apprehends them, and of the objects with which
they are occupied. [I, p. 211] In aldition to being independent of the
percipient mind, they do not even come under the observation of our
senses. [XII, p. 53] He did not define space and time, taking them as
being well known to all. [I, p. 182] We did say, though, that, ‘‘by
existing always and everywhere, God constitutes duration and space.’
[1X, p. 505]

Gottfried Wilhelm Leibnitz (1646-1716) believed space and time
exist only relative to objects and not in their own right. Space is
the arrangement of things that co-exist and time is the arrangement
of things that succeed one another. Space and time are conceptual or
perceptual, but physical space has no real existence. [VI, p. 59] They
are abstracted from our confused sense-perceptions of the relations of
real things. [I, p. 211]

Immanuel Kant (1724-1804) believed that space has no real existence
of its own but is supplied by the mind as a framework for the arrangement
of objects. Also, time has no real existence. Whereas space serves for
the representation of external perceptions, time serves for the repre-
sentation of internal perceptions. [VI, p. 59] Even though time is not
itself real, the consciousness of time, in our apprehensioen of change,
is real, and the same is true for space. [I, p. 211] This does not imply
that the ideas of space and time are inborn. They are products of the
mind (but not abstractions) given in accordance with unchanging laws
by which the mind coordinates sensations. [XII, p. 72] That which does
not conform to the forms of space and time cannot be experienced.
[XII, pp. 73-74]

At this stage of development there finally appeared the discovery
of non-Euclidean geometry with its manifold effects. The works of
Lobachevski and Bolyai appeared almost simultaneously, the former in

"Roman numerals refer to the bibliography.
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1829 and the latter in 1832. Through them mathematicians and philosophers
were able to realize that space was not necessarily Fuclidean. They
found that there were mathematical spaces and physical spaces, and that
their properties need not coincide. Their eyes were opened to the fact
that any space which could be described mathematically might contain
a space concept which could better describe the physical world. [X] It
was this break which finally led physicists and philosophers to see
that certain physical phenomena might be able to be explained on the
basis of some new conception of space which were not able to be explain-
ed on the basis of the old. Thus was born the theory of relativity.
The following paragraphs outline the philosophies of some of the
philosophers, psychologists, and scientists who have developed the
philosophy of relative space and time.

William James (1842-1910) as a psychologist, had more to say relative
to our modes of becoming aware of time than many philosophers. He
contended that the unit of composition of our perception of time 1is
a duration block which is perceived as a whole. Time grows by the
accumulation of these finite pieces of time - these duration blocks.
[viiI, p. 281]

Alfred North Whitehead (1861-1947) wrote so extensively on his
philosophy of space and time, that a brief summary of his position
seems almost to be impossible. Whitehead held the view that space and
time are not real in themselves, but that we abstract ideas of space
and time from events which possess ultimate reality. These events are
not atomic. [VII, p. 2] He said that we are not directly aware of
“points” and “instants’, but that these are abstractions from the
general relation of extension among events of which we are directly
and empirically aware. [VII, pp. 4-5] We cannot obtain an idea of
infinite, unchangeable space from direct observation. [XIV, p. 192] The
primary, most concrete element of space is the volume, and that of time
is the duration. [XV, p. 95] The idea of space is to be found in the
relation of events discernible now, and that of time in the relation of
other events to those discernible now. [XIII, p. 53] Even though space
and time are abstractions from space-time, time is not space-like and
vice versa. [XI, p. 219]

Hermann Minkowski (1864-1909) was a Polish mathematician, who, in
1908, stated the whole content of the theory of relativity in a new
and elegant form. Previously, it had been thought that the laws of
nature described physical phenomena which occurred in a three-dimensional
space, while time flowed uniformly on in another and different dimension.
Minkowski proposed that this extra (fourth) dimension is not independent
of the three dimensions of space. He introduced a new four-dimensional
space in which the ordinarily conceived space contributes three di-
mensions and time one. This may be called space-time. Every point of
space-time is immersed in three dimensions of ordinary space and one
dimension of time, and so represents the position of a particle in
ordinary space at a particular instant of time. The succession of


http://www.jstor.org/page/info/about/policies/terms.jsp

1952) THE PERSONAL SIDE OF MATHEMATICS 151

positions which a particle occupies in ordinary space at a succession
of instants of time is represented by a line in space-time. This he
called the world-line of the particle. [V, p. 295]

Sir James Jeans (1877- ) is a firm believer in relativity. Space-
time is a unity, for him, in which space and time are not entirely
separable. This is true since motion through space takes time. Motion
cannot be described in terms of a three-dimensional space alone; a
fourth dimension must be added. In this space-time unity of four
dimensions, it is not possible to determine uniquely which axis is
time-like and which three are space-like. The unity is different from
its components. Modern physical theory suggests, without being able
to prove, that physical space and physical time do not have separate
existences. They seem more likely to be abstractions from something
more complex—a blend of both. [VI, p. 63]

Albert Einstein (1879- ) has, in general, left to philosophers and
psychologists the answering of the question of how we perceive space
and time. He asserts that space and time have real physical significance,
and are not merely fictitious. [II, p. 31] It seems that the experiences
of individuals are arranged in a series of events; in this series single
events which are remembered appear to be ordered according to the
criterion of earlier and later, which cannot be analyzed further. There
exists, then, for each individual, subjective time which is not in
itself measurable. By use of speech different individuals can, to some
extent, compare these experiences. In this way we find that some sense
experiences of different individuals correspond to a certain extent,
while some have no such correspondence. We regard as real those per-
ceptions which are common to more than one individual, and which, as
a consequence, are more or less impersonal. The conception of physical
bodies, especially rigid ones, is a relatively constant complex of such
perceptions. The only justification we have for our system of concepts
is that they serve to represent the complex of our experiences; they
have no legitimacy other than this. It'is essential in our judgements
and concepts of space to be well aware of the relation of experience
to our concepts. For a concept of space, we seem to need the following.
New bodies can be formed by bringing bodies B, C, ... up to body 4;
body A is said to be continued. Body A may be continued in such a way
that it comes in contact with any other body X. The ensemble of all
continuations of body A is designated as the space of body A. Then it
follows that all bodies are in the space of body A (which was arbitra-
rily chosen). Hence, space in the abstract may not be spoken of, but
only the space of body 4. [II, pp. 2-3]

Sir Arthur Eddington (1882- ) has written extensively for both
popular and technical consumption.Of space he has said that there is
nothing in our primitive sense experiences which can be designated
as spatial, but rather that spatiality seems to be an order of the
material objects sensed. The concept of material object is logically
primary to any concept of space. Material bodies themselves exist only
in so far as they are thought. [III, p. 105] Space and time in the
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physical world seem to have a togetherness, and neither has an individual
existence in the physical world. There is a difference, though, in our
apprehension of time-extension and space-extension. All our knowledge
of space relations is indirect. It is a matter of inference and inter-
pretation of sense impressions. We have a similar indirect knowledge
of time relations, but we also have direct knowledge of them through
mentally feeling time. This he calls time of conciousness. This feeling
of time is one of the respects in which time differs from space. This
time of conciousness may be extended to subjective physical time in the
following manner. Sense experiences form a time series indicated by
earlier and later. These series can be repeated by the memory, and
they can be repeated with some elements replaced by others by an act
of the mind. In this way the time concept is formed as a frame in which
experiences may be filled in in various ways. The only reason this can-
not become objective is that corresponding series of external events
do not appear the same to all individuals: [III, p. 107] Eddington
has excited argument over his explanation of how the individual knows
that the time of conciousness or time series is uni-directional. He
claims that the conciousness can grasp this singleness of direction,.
but that there is a criterion in the physical world, independent of
conciousness, and hence objectively real, establishing this unique
direction, and this is the increase in entropy. (I, p. 480]

Thus we have traced the evolution of the philosophy of space and time.
No one other single discovery played as important a role in the latest
phases of the evolution as did the development of non-Euclidean geometry.
That this evolution is surely not yet complete is a view held by many,
including Dr. Einstein, whose view is given by his biographer, Philipp
Frank: ‘“among the theories there will some day be one which in its
logical simplicity as well as its simple representation of observation
will be so greatly superior to all rival theories that everyone will
recognize it as the best in every respect.” [IV, p. 283] Those who
developed non-Euclidean geometry have opened areas of thought never
before conceived, and it seems sure that some avenue of thought thus
opened may lead to even better understanding of the nature of space and
time, a thought well expressed by Sir Edmund Whittaker: ‘‘The humblest
research student was thrilled to feel that the novel and unprecedented
types of geometrical form he invented might prove to be not the ar-
bitrary and fanciful creations of a pure mathematician,. but a description
of the actual universe in which we live.” [XVI, p. 41]
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STATISTICAL QUALITY CONTROL
John M. Howell

Statistical Quality Control is the application of statistical methods
to manufacturing and industrial problems. These methods, which were
first employed less than thirty years ago, are widely used today.

The first assembly operation was performed many thousands of years
ago when some stone age man fitted a stone to a wooden handle by means
of some crude rope to make the first axe. Manufacturing in ancient times
and up until less than two centuries ago was on a custom basis. One
could not drive in at the corner service station to get a new wheel if
he broke one on his wagon. A new one would have to be made and fitted
in place. One of the biggest improvements in manufacturing practice was
made just before 1800, when Eli Whitney made some parts for guns which
were interchangeable. It was the common thing during this period for
one man to make his own tools, make the parts, inspect them, and then
assemble them. Today, workmen usually perform very specialized functions.
One of these specialized functions in a manufacturing plant is Quality
Control.

The first use of statistical methods to improve a manufacturing
process was in the early 1920’s. This was done by Dr. Walter Shewhart
at the Bell Telephone Company. Since that time, the use of these tech-
niques has spread to nearly all of the large manufacturing companies
and many of the small ones. This growth was rather slow at first, but
due primarily to the stimulus of the last war, these methods have become
very widely used in recent years. Several companies report savings in
the millions due to use of quality control techniques.

Statistics is a field which presents many opportunities. Quality
Control presents splendid opportunities for young men who hLave some
knowledge of statistics and also some knowledge of engineering or
manufacturing processes. There are also tremendous possibilities for
the application of these techniques to fields other than the manufacture
of machine parts. Quality Control has been applied to chemical processes,
packaging of food and other materials. Here is an answer for a mathe-
matics teacher who may be asked the question, “What can I do with
mathematics other than teach?”

The field of Quality Control can be divided into three branches:
process control, acceptance sampling, and research and development.
A brief description of some 6f the methods used will be given here.

Process control concerns a manufacturer’s inspection of his own
product in order to determine:

1. what to do with the parts which have been made, (accept, rework,

or reject)

2. what to do about the manufacturing process, (change it or not).
This control is usually accomplished by statistical tools called control
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charts.

If measurements are made, charts for averages and ranges are used.
These measurements might be dimensions, electrical characteristics,
or weights. A small sample, often five pieces, is inspected at approxi-
mately regular intervals. This may include all of the product or only
a portion of it. The average and the range of the sample are computed,
the range being the difference between the smallest and largest measure-
ment. The value of average is plotted on one chart and the value of
range on another. After about twenty such points have been plotted on
the charts, control limits are computed. This calculation requires
merely that the average values found be multiplied by some constants
which are found in any text on the subject. These limits are placed on
the charts as horizontal lines. To simplify the discussion here, we
will assume that all points for this preliminary data are within these
control limits, or we say the process is ‘‘in control’. A typical
control chart which is in control then appears as follows:
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As the manufacturing process continues, points are plotted on the
control chart and if the points remain within the control limits,
this fact is taken as evidence of control. But if a point should fall
outside of control limits, conditions at this time are noted and
attempts made to bring the process back into control. This takes only
a little statistical knowledge, but a large amount of practical know-
ledge. The usual thing is to find a process ‘““out of control” at the
beginning, but discussion of this case is considerably more complex
and will not be included here.

If measurenents are not made on the product, but it is simply divided
into two portions: that which is good and that which is not good, the
percent defective of each sample is plotted on a chart. Limits for this
type of chart may also be found and the results are very similar to
that given above for the case where measurements are made. For this
type of chart, called a percent defective or fraction defective chart,
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larger sample sizes are necessary and results are often not as positive.
This type of chart is often used for sub-assemblies and in the in-
spection of protective or decorative finishes where measurements are
impossible or impracticable.

For large assemblies, a chart known as a defects per unit chart is
often made. This chart has the number of defects plotted in place of
measurements. Further information on process control may be obtained
from Grant, ‘‘Statistical Quality Control”.

Acceptance sampling is used in the inspection of incoming material.
Here the purpose of inspection is to determine:

1. what to do with the particular lot at hand, (accept, rework,

or reject)

2. what to do about the supplier, (continue to purchase from him

or not).

A statistical sampling plan indicates how much inspection is required
for any desired value of percent defective in the material. The first
sampling plans were devised by Dodge and Romig of the Pell Telephone
Company in the 1920’s. A new sampling plan for the procurement of mil-
itary material, MIL 105A, has appeared within the last year and unifies
procedures for the various branches of the armed services. By using
statistical sampling plans, a manufacturer can tell if the material and
component parts he is getting are good enough for his needs.

Sampling by variable, that is by using measurements instead of
merely determining conformance, is a new field, and although some
plans of this type are being developed, none has been released for
general use up to the present time. Those interested in the subject
of acceptance sampling should read, “Sampling Inspection”, by Freeman,
Friedman, Mosteller, and Wallis.

The use of statistical techniques in research and development 1is
a vast and interesting field. Here, a much broader background in math-
ematics and statistics is necessary to cope with the problems which
arise. The reader is referred here to Freeman, “Industrial Statistics’’.

Other references on this subject can be found in those cited and in
Butterbaugh, “A Bibliography of Quality Control”, or in “Industrial
Quality Control”, which is the publication of the American Society
for Quality Control.

Los Angeles City College



MATHEMATICAL CAREERS IN MILITARY RESEARCH
John W, Odle

Mathematicians who can recall conditions prior to World War II are
aware that tremendous changes have occurred in the opportunities open
to them. Formerly, teaching was almost the sole occupation available,
with a scarcity of openings and anemic salaries. Now the mathematician
is in the enviable position of being able to select from a wide variety
of well-paid jobs in government and industry, as well as in the field
of education. The excellent work done by the Applied Mathematics Panel
and by many scattered individual mathematicians during the war helped
greatly to bring about a recognition of the usefulness of mathematicians
in activities concerned with the development and usage of complicated
equipment. This recognition did not die out after the war and, in fact,
is still on the increase.

In this presentation primary attention will be focused on those
outlets for mathematical talent which are directly connected with
military agencies. As all taxpayers well know, the defense establishment
in this country is heavily engaged in the support of many weapon develop-
ment projects, in both government and industrial laboratories. Modern
weaponeering has become a tremendously complicated business requiring the
best possible talent in the fields of physics, chemistry, and engineer-
ing. Because mathematics is the universal tool in these fields, and
because the workers in these fields are not all mathematical wizards, it
is natural and inevitable that mathematicians should be drawn in to
participate in the formulation and solution of problems.

As one would naturally expect, the primary demand is for mathe-
maticians with special training and experience in some applied field,
although a surprising amount of pure mathematical research is sponsored
by the Office of Naval Research and certain Air Force and AEC agencies.
Security restrictions prevent detailed discussion of many of the inter-
esting problems, but certainly it can give little aid or comfort to the
enemy to know that our scientists are pursuing studies in such fields as
aerodynamics, ballistics, fluid mechanics, circuit analysis, thermo-
dynamics, elasticity, theoretical mechanics, optics, nucleonics, and
other branches of mathematical physics. In addition to their participa-
tion in such studies, mathematicians are contributing important services
of general utility in the areas of high-speed computing and statistical
analysis.

Computing, as a matter of fact, has become one of the major new fields
in mathematics. It is, of course, the oldest branch of mathematics, but
the accomplishments of modern electronics have excited many new interests
in treating by numerical methods problems which are analytically intract-
able. The government is subsidizing many super-computer development pro-
jects, and almost every laboratory has plans, or at least hopes, for
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acquiring one of the new monsters. Fortunately, there seems to be no
danger of technological unemployment from these developments. On the
contrary, any institution acquiring modern computing equipment always
seems to develop a voracious appetite for more mathematicians, because
the machinery has not yet acquired independent volition and someone has
to tell it in precise detail just what to do. Modern computing is an
excellent field to recommend to budding young candidates for a career
in mathematics because it offers opportunities for people with a very
wide range of training ~ from a taste of undergraduate mathematics to the
Ph.D. level - and the market should be an expanding one for a long time
to come.

A new field for mathematicians, and other scientifically trained
people, which opened up during the past war is that of operations re-
search. The armed services found that the efficiency of operations
could sometimes be dramatically improved by relatively simple changes in
procedure recommended by scientific observers, and a whole new service
was born to supply such observers. The Navy now has an Operations Eval-
uation Group, the Army an Operations Research Office, and the Air Force
an Operations Analysis Section. These groups, despite the minor varia-
tions in name, all have essentially the same purpose, namely, to subject
military doctrine, tactics, and weapon planning to critical scientific
scrutiny and suggest improvements to various command levels. The tech-
niques of statistics and probability are the chief mathematical tools for
such work. For mathematicians with a high sense of adventure, military
operations research offers an exciting and rewarding career. As a bit
of advice gleaned from personal experience, it might be mentioned that
this work is particularly suitable for single men because it usually
involves a considerable amount of travel about the world. Wives tend
toward a jaundiced view of this feature of the work. The field is not
generally open to women because of the complications of arranging living
accommodations when with the armed forces away from home.

As an indication of the extent to which mathematicians are being used
in the defense establishment, the writer recently jotted down for his
own use a casual list of the military offices and laboratories which he
knew by personal experience hired high level mathematicians, and with no
difficulty ran the number up beyond thirty. This was by no means a com-
plete list, and it did not include the many university and industrial
groups doing military research and development work on contracts.

For a mathematics student considering an eventual career in military
research and development there are two sound recommendations. One is
to get the maximum amount of education, up to and including the Ph.D.
degree, if possible, and the other is to develop a strong interest in
some applied field. A minor in physics is very desirable. Mathematical
statistics is also an excellent field to concentrate in at this time,
It is assumed, of course, that anyone majoring in mathematics will
automatically get a thorough grounding in the fundamentals of analysis.
Without such a foundation, one can become at best only a handbook


http://www.jstor.org/page/info/about/policies/terms.jsp

1952) MATHEMATICAL CAREERS IN MILITARY RESEARCH 161

specialist with no capacity for advanced research.

A point of view which needs to be heavily stressed in the training
of mathematicians for non-academic careers is that problems are not
considered solved until usable numerical solutions are obtained. The
consumer 1s more interested in results than in the ingenuity which may
have been required to get them. Furthermore, the readers for whom reports
on work accomplished are intended are often not trained in the in-
tricacies of mathematical analysis, and consequently the essential
results must be presented with great clarity and simplicity.

Civilian employees of the military services come under the provisions
of the Federal Civil Service regulations, with all of the advantages
and disadvantages which Congress has chosen to impose. Actual working
conditions vary widely, of course, from one laboratory or office to
another, but there are certain constants throughout the system. For
example, annual leave for vacations is granted according to a definite
formula: Thirteen working days per year for employees with less than
three years federal service, civilian and military; twenty working days
for employees with three to fifteen years service; and twenty-six working
days for employees with more than fifteen years service. In addition,
thirteen working days of sick leave are allowed per year. These leave
credits may be accumulated from year to year subject ta a maximum limit
of sixty days annual leave time and with no limit on sick leave. Pay
scales are supposed to be uniform also, with salaries determined accord-
ing to an objective system for rating the difficulty and importance of
each position. Fighteen different levels are recognized under the pre-
sent government schedule for per annum employees, labelled GS-1 to GS-18.
Fach level has a basic salary and a schedule of within-grade increases.

To give some concréte examples, the GS-5 level, which is the normal
entering grade for a fresh college graduate with no other experience,
has a starting salary of $3410, with annual increases of $125 up to a
maximum of $4160. A Master’s degree qualifies a candidate for a grade
of GS-7, with a starting salary of $4205 and annual increases of $125
up to a maximum of $4955. A Ph.D. degree now is sufficient qualification
for a GS-11 position, with an entering salary of $5940 and a $200
increase each 18 months up to a maximum of $6940. Promotions beyond
these levels are dependent upon individual initiative and the availabil-
1ty of openings. Base salaries at the higher levels are as follows:
GS-12, $7040; GS-13, $8360; GS-14, $9600; GS-15, $10,800. Appointments
to grades GS-16 to GS-18, salaries $12,000 to $14,800, require special
approval and are limited in number by statute.

Civil Service employees also enjoy an excellent retirement system
and good job security. The latter item is determined chiefly by Con-
gressional appropriations. Anyone is free to make his own predictions,
but it appears highly probable that the military services will continue
to receive strong support for a long time to come. Furthermore, scientif-
ic staffs are among the last to be let go at times of cutting back.
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With regarl to the less tangible but nevertheless vitally important
factor of job satisfaction, this obviously depends on the individual
and on the particular local environment he finds himself in. One can
find both good and bad situations in government service, just as in any
other field of employment. On the whole, the opportunities for doing
satisfying, high-level scientific work are now as good in military
laboratories as in any other area with which the writer is familiar.

On the debit side of the ledger one can cite a reasonably impressive
list of disadvantages also. One is the ever-present red tape which is
the source of many jokes and much frustration. However, red tape 1is
apparently no longer a government monopoly, because one hears just about
as much complaining on this score from academicians as from civil ser-
vants. Actually, red tape seems to be an inevitable accompaniment of
bigness in any enterprise, whether public or private. Examples of
problems which bigness creates are: delays in getting decisions made,
communication difficulties in dealing with unknown bosses far away,
submergence of the individual and a lessening of his feeling of effec-
tiveness, necessity for voluminous progress reports, and difficulties
in getting new projects underway. Of course, in fairness it should be
pointed out that bigness also makes possible the expenditure of large
sums and the undertaking of large-scale projects impossible in a small
organization.

A further disadvantage connécted with doing technical and scientific
work for military agencies is that much of the work is classified, and
hence there are restrictions on publishing or disclosing accomplishments.
This appears to be a necessary restraint which can never be eliminated.

As in almost any choice one may make in life, one has to take the
bitter with the sweet, and government service is no exception. Fortunate-
ly, in the minds of enough people, the advantages seem to outweigh the
disadvantages so that necessary jobs manage to get done. There is still
room for further talent, however.

U. S. Naval Ordnance Test Station

China Lake, California
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MISCELLANEOUS NOTES
Edited by
Charles K. Robbins

~ Articles intended for this Department should be sent to Charles K.
Robbins, Department of Mathematics, Purdue University, Lafayette, Indiana.

SOME NOTES ON THE LIMIT CONCEPT

The intriguing relationship between the operation lealing to the
basic geometrical interpretation of the derivative and that which brings
forth the function e* seem to be ignored in most calculus texts. An
understanding of this relationship not only strengthens the concept of
limit acquired by a calculus student - but it helps to remove the
mystery associated with e”.

Without further ado let us recall that the elementary geometrical
illustration of the derivative entails a single-valued continuous
curve f(x) which is differentiable at all points in the given interval.

A secant line may then be constructed through a fixed point P and
any other point, say Q, on the curve. The usual procedure is to permit
the point Q to approach the point P along f(x). As Q approaches P, the
slope of the secant line approaches the slope of the tangent line at the
point P. The limit of the slope of the secant line IS identical with
the slope of the tangent. In this operation the curve f(x) is held
stationary while the straight line through P is rotated. It will be
shown that the exact opposite is true with the function e*, i.e. the
straight line is held constant and the curve f(x) rotated!

Consider the points of intersection between the line (a) y = x + 1
and a curve of the form (b) y = a¢*. It is evident that the curves will
meet at x = 0, independent of the value of “a”. Call this the fixed
point P. Now to find the other junction, eliminate y between equation
(a) and (b). Thus a* = (x + 1) or

Eq. (c¢) a= (x+1)*

Equation (c) represents the value of “a” for a given x such that
(a) and (b) will meet at a point, say point Q. If we let Q approach
the point P along the straight line (a), the curve f(x) = a* will
experience a rotation about P. The limiting position of this rotation,
as in the previous case, 1s unique in that it will touch the straight
line at only one point. The value of “a” in the limit is “e”. that 1is:

lim a = lim (1 + 2)'/% = ¢
x—0

x—0

and the curve of form (b) becomes y = e*.
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Figure (1) is the typical illustration of the derlvatlve for y = x
while figure (2) represents the foregoing process.

= y=x+1
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The above examples illustrate the most important characteristic of
every actual ((as opposed to a relative lim)) limit process. That is,
a limit must always be outside the domain of that which it limits. For
instance, no member of the subclass secant, in the first example, may be
called a limit, for another can always be found whose slope exceeds the
one mentioned.

A simple i1llustration of this is found in the class of polygons
inscribed in a circle. As the number of sides of the polygons become
as large as we desire, the area of the polygon approaches the area of
the circle. However, none of the elements (polygons) of the given
sub-class may be called an actual limit, for if it were, another polygon
could be found whose sides are two, three, etc. times as numerous as the
sides of the given one; and consequently, the area of the larger polygon
would more closely approximate the area of the circle. The areas of the
polygons are forever seeking but never attaining the area of the circle,
which 1s obviously the limit.

It is interesting to note that a whole field of wathematics arose
by predicating the property of one subclass with that of another under
the same genus. Consider the genus Magnitude, if the property of Point
is predicated of the subclass Line, then a “quantity” is produced which
is so small that it can’t get any smaller. This is the so called infin-
itesimal which, thanks to Weierstrass, is being recognized by mathe-
maticians for what it is — a useless metaphor!

Leibniz utilized this concept when he predicated secant of the
tangent. He said, in effect, that a tangent touches a curve at two points
which are infinitesimally close. Poisson1, as well as Leibniz, believed
that infinitesimals actually existed.

Mathematicians were not the only ones who misused interclass pred-

1Poisson, Traite de Mécanique, Part I, second edition, p. 14 Paris, 1833.
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ication. The world is fully cognizant of the opportune employment of
these infinitely small quantities by Hegel in his philosophical doc-
trines. The same error is repeated by anthropologists when they pred-
icate brute of man and thereby produce the fictitious missing link”
which has, of necessity, the same kind of reality as the infinitesimal.
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CURRENT PAPERS AND BOOKS
Edited by
H. V. Craig

This department will present comments on papers previously published in the
MATHEMATICS MAGAZINE, lists of new books, and book reviews.

In order that errors may be corrected, results extended, and interesting
aspects further illuminated, comments on published papers in all departments
are invited.

Communications intended for this department should be sent in duplicate to
H. V. Craig, Department of Applied Mathematics, University of Texas, Austin
12, Texas.

Tables to Facilitate Sequential t-Tests, by Kenneth J. Arnold,
National Bureau of Standards Applied Mathematics Series 7, xix, 82 pages,
45 cents (order from Government Printing Office, Washington 25, D.C.).

This 82-page booklet will be of interest and value especially to
statisticians and research workers in the physical and biological
scilences, 1in engineering, and in industrial quality control. It will
enable them to answer economically the commonly occurring question
whether or not a certain specified value is the mean of a normal popula-
tion with unknown dispersion.

Sequential analysis is a newly developed tool of statistical sampling.
Instead of taking a sample of fixed size, the investigator uses size
dictated by the outcome of the observations. This usually allows a
smaller sample than those under previous methods in common use. The
tables will make it possible to apply the efficient methods of sequential
to the testing of hypotheses regarding the mean of a normal population.

In the application of this new tool, each type of test requires
special tables to determine whether or not the accumulated evidence
from the observations at each stage calls for additional data or
justifies one decision or another. Using the present tables, the
investigator decides the possibility of the mean being a certain given
number in the important type of tests in which a normal universe with
unknown mean and dispersion is given. The appearance of these tables
should considerably further the many practical applications of sequential
analysis.

General Homogeneous Coordinates in Space of Three Dimensions.
by E. A. Maxwell. Cambridge University Press, New York, 1951. $2.75.

This text deals primarily with classical elementary analytic pro-
jective geometry of three dimensions, with especial emphasis on the
properties of quadric surfaces, the elements of line geometry, and the
elementary properties of twisted cubic curves. No use is made of matric
notation, though an indication of its value is given in the final
chapter.

166


http://www.jstor.org/page/info/about/policies/terms.jsp

1952) CURRENT PAPERS AND BOCKS 167

The book is a sequel to the author’s work on two-dimensional pro-
jective geometry, and references are made to this work. Some knowledge
of this subject is necessary for an understanding of the text under
consideration.

The work 1s tersely written, which would make it difficult reading
for the average American student. There are no suggestive illustrations,
few illustrative examples, and few simple exercises. However, many of
the exercises deal with interesting properties of curves and surfaces,
and some contain theory essential to the understanding of the subject.

It should be noted that this type of geometry is not at present
popular in this country. However, this book should prove to be of value
as supplementary reading for those interested in this subject.

K. C. Sanger
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PROBLEMS AND QUESTIONS
Edited by
C. W. Trigg, Los Angeles City College

Readers of this department are invited to submit for solution problems
believed to be new and subject-matter questions that may arise in study, in
research, or in extra-academic situations. Proposals should be accompanied
by solutions, when available, and by such information as will assist the
editor. Crdinarily, problems in well-known textbooks should not be submitted.

Solutions should be submitted on separate, signed sheets. Figures should
be drawn in India ink and twice the size desired for reproduction. Readers
are invited to offer heuristic discussions in addition to formal solutions.

Send all communications for this department to C. W. Trigg, Los Angeles
City College, 855 N. Vermont Ave., Los Angeles 29, California.

PROPOSALS

119. Proposed by P. A, Piza, San Juan, Puerto Rico.
Solve t t , t,,, = 468ty3 + 468 for x and y. t, = ala + 1)/2.

126. Proposed by Victor Thébault, Tennie, Sarthe, France.

On the sides CB and CD of rectangle ABCD construct internally
(or externally) equilateral triangles CE B and DFC. Show that triangle
AEF is equilateral.

121. Proposed by Norman Anning, University of Michigan.

Solve in positive integers, (x + iy)> = x + (a pure imaginary).
For instance, (7 + 41)3 = 7 + 5241,

122. Proposed by P. D. Thomas, U. S. Coast and Geodetic Survey,
Washington, D.C,

Show that the envelope of a circle, the square of whose tangent from
the origin is equal to the ratio of the abscissa to the ordinate of
1ts center, the center lying on the parabola x = ayz, is a circular
cubic, one of whose asymptotes is parallel to the y-axis.

123. Proposed by Joseph Barnett, Jr., Clarksburg, k. Va.

Theorem: A necessary and sufficient condition that a perpendicular
from the vertex of a spherical triangle to the circle containing the
opposite side fall on that side is that the angles adjacent to that
side be of the same species.

124. Proposed by Leo Moser, University of Alberta, Canada.

Prove that if p and g are integers not exceeding the integer n,
then it is possible to arrange n or fewer unit resistances to give a
combined resistance of p/gq.
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125. Proposed by William Leong, University of California at Berke-
ley.

Consider the sequence of numbers {ai} where 3a, = 1, 7a, = alz,
llag = 2a,a,, 15¢, = az2 + 2a,a,5, 19a; = 2(a e, + a,ay), 2304 = a32
+ 2(ajag + aya,), **-. Let ut = %Eg a,/ay,+y. Then show that (a) the
nunber 1 exists, and (b) u satisfies the equation

(—l)kMAk ) 0
1 3°4-7-8-+ (4k - 5)(4k - 4)(4k - 1)4k

M8

k

SOLUTIONS
Erratum

89. In the solution of this problem which appeared on page 109 of the
November-December 1951 issue the 23rd line ends with ‘“The desired
equations are then ...” This should have been followed in the printed
solution by

[ "
t.: = m.x + b, d u,: = m.x + cC.
iy i i and u;iy m,x c; where

A Condition for az + b2 + c? = gR?

83. [November 1950] Proposed by Victor Thébault, Tennie, Sarthe,
France.
If the Lemoine point of a triangle ABC lies on the circumcircle

of the tangential triangle of ABC we have a® + b2 + c? = 6R?, where
a, b, ¢ are the sides and R is the circumradius of ABC.

Solution by P. D. Thomas, U. S. Coast and Geodetic Survey, Washington,
D.C. It is clear that the circumcircle of ABC cannot be the incircle
of the tangential triangle, but must be an excircle if the Lemoine
point, K, of ABC is to lie on the circumcircle of the tangential
triangle.

Referring to the figure we have
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—, 2

00'% - R'?

= 2RR’, (1)

where O,R and O',R’ are the circumcenters and circumradii respectively
of ABC and its tangential triangle A'B'C’.
With respect to the inscribed quadrilateral A'B'KC’' we have

BC? = ¢ = 0'B2 + 0'C? - 2R'?, (2)

Again from the figure, using the median theorem in triangle O'BC,
we have

2 0'S%2 = 0'B%2 + 0'C% - La?. (3)

Considering the triangle O'A'O we find by Stewart’s theorem
0782 = R'? + a?(00"" - R'?)/4R? - o%/4. (4)
From (2) and (3) we have 0'S? = R'> + a?/4 and with the value of
00™ - R'% from (1) we may write (4) as

R'? + a%/4 = R'® + 4®R'/2R - a2/4, whence R = R'.

With this condition the relations (1) and (2) become

00"2 = 3R2, O'B- + 0'C2? = 2R + a2, (5)
Now if F is the midpoint of 00, we find in the quadrilateral 0'BOC
(O'B? + 0'C?) + 2R® = 00"2 + a® + 4FS’, (6)

With the values from (5) placed in (6) find that FS = R/2.

Similarly it may be shown that the distance from F to the midpoints
of AC and AB is equal to R/2, that is F is the nine point center of
ABC and 0" is therefore the orthocenter of ABC. I view of this last
fact we have

0°C2 + ¢2 = 4R®, O'B2 + b2 = 4R® or

(O'B- + 0°C°) + b2 + c? = BRZ, (1)

Substituting from (5) in (7) we have the announced relation.

The relations (1) and (2) may be found in Altshiller - Court, College
Geometry, pages 109, 114. Relations (3), (4), (6) and (7) appear in
R. A. Johnson, Modern Geometry, pages 68, 163, 191.

Also solved by L. M. Kelly, Michigan State College.
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Volume of Solid formed by Folding

95. [March 1951] Proposed by A. O. Qualley, Farnhamville Independent
School, Iowa.

Each side of a square sheet of paper ABCD equals 2a. The midpoints
of AB, BC, CD, and DA are E, F, G, and H, respectively, and O is the
center of the square. The square is creased inward along EG and FH,
and outward along the diagonals AC and BD. E, F, G, and H are then
drawn inward to form the base of a square pyramid O - EFGH, surrounded
by four tetrahedra OAHE, OBEF, OCFG, and ODGH. (1) If each side
of the base EFGHis a, find the volume of the whole solid. (2) Find
the length of the side of the base EF GH for which the total volume
is a maximum, and compute the maximum volume.

Solution by Leon Bankoff, Los Angeles, California. Let x represent
the length of the side of the base of the square pyramid 0 - EFGH.
Then the volume of the pyramid is (x2/3) va? - x2/2. A plane through
HE and P, the midpoint of A0, is perpendicular to A0 and divides the
tetrahedron OAHE into two congruent tetrahedra with isosceles tri-
angular bases. The volume of each of these tetrahedra is (1/3)(a V2/2)
(x/2) Va?/2 - x2/4 or (ax/12) Va2 - x2/2. There are eight of these

tetrahedra, so the volume of the whole solid 1is

V= [x2/3 + 2ax/3] Va? - x2/2. (1)

(1) Hence, when x = a, V = a® ¥/2/2 or approximately 0.7071a%.
(2) Obtaining dV/dx from (I), equating it to zero and simplifying,
we have

323 + 4ax? - 4a’x - 4a% = 0.

The one positive root of this equation is approximately 1.07170a.
Therefore, from (I), the maximum total volume of the whole solid is
approximately 0.7160a>.

Also solved by A. L. Epstein, Cambridge, Mass.; and the proposer.
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Difference of a Cube and a Square

98. [May 1951] Proposed by Victor Thébault, Tennie, Sarthe, France.

Find a perfect cube and a perfect square such that their difference
is 2,000,000,

Solution by Leon Bankoff, Los Angeles, California. All solutions

of the equation x% + 2y2 = 2" in relatively prime x, y and positive

z are given by x + y V-2 = t(p + q V-2)", 2 = p® + 2¢% with p, 2g
relatively prime and of different parity. [See, e.g., Uspensky and
Heaslet, Elementary Number Theory, McGraw-Hill, (1939), p. 393-5.]

If y = 1000, n = 3, then 2% - x? = 2,000,000 and x + 1000 /-2
= +(p + qv~2)% = £(p® + 3p2q V-2 - 6pq® - 2¢° V-2). Equating the

real parts and the imaginary parts, we have

x = +(p3 - 6pq?) and 3p2q - 2¢° = £1000,

whereupon p = t /Téqz + 1000/¢]/3, where the double signs are indepen-
dent of each other. Hence g must be a divisor of 1000, Now 8 is the

only permissible value of g of parity different from the corresponding p,
namely t1. Therefore x = 383, z = 129 and

1293 - 3832 = 2146689 - 146689 = 2000000.

Also solved by George Baker, California Institute of Technology;
H. H. Berry, University of Kentucky; Monte Dernham, San Francisco,
California; L. A. Ringenberg, Eastern Illinois State College; and the
proposer.

Baker, by inspecting a table of squares and cubes also found (300)3
- (5000)2 = 2,000,000, This result may also be obtained by taking
p=g-= 10 in Bankoff’s solution. That this is the only other solution
to z° - x% = 2,000,000 may be shown by assuming that z and x have certain
common factors and reducing the resulting equations. The only ones
secured are

3 2

zy - xy = 31250, =z = 4z, x = 8x,;
z: - xi = 128, z = 25z,, x = 125x,; and
22 - 3= 2, z=100z, x= 1000x,.

Following the method of Bankoff’s solution, we find x, = 625, z, = 75;

x, = +40, z, = 12; x; = £5, z; = 3. Fach of these solutions is equivalent
to x = 5000, z = 300,

Area of Parallelogram Circumscribed to Ellipse

100. [May 19511 Proposed by Wang Shik Ming, Chung Hwa High School,
Malang, Java, Indonestia.

The area of the parallelogram formed by the tangents to an ellipse
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at the extremities of any pair of conjugate diameters is equal to the
area of the rectangle contained by the axes of the ellipse.

Solution by Charles McCracken, Jr., University of Cincinnati. Let
C be the center of the ellipse and let PCP', DCD' be the conjugate
diameters. The area of the parallelogram which touches the ellipse
x2/a®> + y2/b%2 = 1 at P, P', D, D' is 4(CD)(CF) where CF is the per-
pendicular from C on the tangent at P.

Now 1f the eccentric angle of P is ¢, the eccentric angle of D 1s
¢ + 7/2. Then

(CD)? = a%cos?(p + 7/2) + b%sin?(p + 7/2)
or (CD)? = a®sin’¢p + b%cos?o. (1)
The equation of the tangent at P is

(x/a) cos ¢ + (y/b) sin ¢ = 1.
So (CF)? = 1/[(cos ®)/a® + (sin 9)/b?]
or (CF)? = a?b%/(a®sin’p + b%cos?P). (2)

From (1) and (2) we see that the area of the parallelogram is equal
to 4ab. Since the major and minor axes are conjugate diameters, the
proposition is proven.

The above proof appears as a theorem on pages 132-133 of Charles
Smith, Conic Sections (1884).

Also solved by George Baker, Student, California Institute of
Technology; Leon Bankoff, Los Angeles, California; Vern Hoggatt and
Adrian Wenner, Oregon State College.

QUICKIES

From time to time this department will publish problems which may be solved
by laborious methods, but which with the proper insight may be disposed of
with dispatch. PReaders are urged to submit their favorite problems of this
type, together with the elegant solution and the source, if known.

¢ 51. Compute the first period of the repeating decimal equivalent
to 1/72. [Submitted by J. M. Howell.]

@ 52. Prove that no perfect square can be written in the scale of

ten with just five digits which are listinct, but congruent modulo 2.
1

[Victor Thebault in the American Mathematical Monthly, 44, 248, (April

1937).]

@ 53. Solve for zz x(x + 1) + y(y + 1) + 2(z + 1) = 5/2.

& 54. Prove that the area of a parallelogram, whose vertices lie at

lattice points of a square lattice, is a whole number of unit squares.
[Submitted by Leo Moser.)
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ANSWERS

A 51 1/72 = 1/49 = (0.02)/(1 - 0.02) = (0.02) + (0.02)2 + (0.02)% + -
= 0.020408163264
128
256
512
1024
2048
4096
2192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
0.02040816326530612244897959183673469387755102040

A 52. There are but two sets of five digits, 02 46 8 and 1 357 9,
which are distinct and congruent modulo 2. The sum of the digits of
every perfect square must be congruent modulo 9 to 0, 1, 4 or 7. How-
ever, the sum of the digits of the first set is congruent to 2 (mod 9).
If the last digit of a perfect square is odd, the penultimate digit
must be even. The second set contains no even digit. Hence no permutation
of either set can be a square number.

53. z/(z + 1) =5/2 - x/(x + 1) - y/(y + 1)

(52y + 52 + 5y + 5 = 2xy - 2x - 2xy - 2y9)/2(x + 1)(y + 1)

(xy + 3x + 3y + 5)/(2xy + 2x + 2y + 2). Applying division we have:
z=(xy+3x+ 3y +5)/(xy-x-y-3).

n o

A 54. The result follows immediately from the determinant expression
for the area of a parallelogram (or triangle) derived in elementary
analytic geometry texts. The value of a determinant whose elements
are integers is of course an integer.


http://www.jstor.org/page/info/about/policies/terms.jsp

FRENCH MATHEMATICAL BOOKS - (October-November 1951)
Bibliographical selection established by TECHNIQUE ET LITTERATURE

10 - Rue Armand Moisant - PARIS 15.

BAYER (Raymond) ~Calcul des probabilites - Actualites scientifiques
et industrielles - No 1146 (Hermann -Paris).

BCREL (Emile) - Les Nombres inaccessibles (Monographie sur la Theorle
des Fonctions - (unthler-Vlllars)

BOREL (Emile) et DUTHEIL (R.) -La Geometrie et les Imagmalres
(A. Michel). .

BOURBAKI (N.) -ALGEBRE. Chap. I: Structures - (Actuahtes

cientifiques et industrielles NN °934-1144- (Hermann) .

BOURBAKI (N. )-'IHEORIE DES ENSEMBLES (Actualites scientifiques
et industrielles NN° 846-1141 - Hermann) . . .
BCURBAKI (N.) - TCPOLCGIE GENERALE - Chap. I and II -
(A.S.I. NN° 858-1142). . . .
BCURBAKI (N.) ~TOPOLOGIE GENFRALE Chap. III and IV
(A.S.I. NN®916-1143). . . . . . . . « « v ..
DAVAL (R.) et GUILBAUD (G.T. )—LA METHCDE STATIS'I‘IQJE First part
Statistique % un seul caractere - fasc. 2.
Distributions binomiales (P.U.F.).
POLLACZEK (F.) - PRCBLEMES DE CALCUL DES PmBABILITES RELATIFS A DES
SYSTEMES TELEPHCNIQUES SANS POSSIBILITE D’ ATTENTE.
(Annales de 1'Institut H. Poincarre - Tome XII,
Fasc. 2 - Gauthier-Villars). . .
YATES (F.) - BASES LOGIQUES DE PLANIFICATION DES EXPERIENCES (G V )

. $3.25
. $4.25
. $2.50

$5.00

. $2.00
. $6.00

$5.00

. $2.00

. . $2.00
. $2.25

Prices above are inclusive of all postal charges - Send your orders with
cash to GEMMA PUBLICATION - 503 — FIFTH AVENUE - NEW YCRK 17, N.Y. You
will receive your books directly from PARIS within three weeks/one month

by registered mail.
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